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1 Introduction

Following a desire for secure (encrypted) multiparty computation, the University of Texas
at Dallas Data Security and Privacy Lab created the paillierp Java packages. By using
a threshold variant of the Paillier Encryption scheme as laid out in [2], we use the methods
described in [1] to allow secure multiparty computation. This implementation is heavily
Object Oriented, having separate objects for (1) encryption/decryption environments, (2)
keys, and (3) zero knowledge proofs. As the threshold variant of Paillier is an improvement
on the original scheme, the original Paillier encryption scheme is included and is a superclass
of the threshold version.

1.1 Paillier’s Encryption Scheme

Paillier’s cryptosystem is a probabilistic encryption scheme wit a public key of an RSA
modulus n. The plaintex space is Zn and the ciphertext space is Zn2 . As Damg̊ard
introduces

Paillier’s Encryption scheme is a probabilistic encryption scheme based on com-
putations in the group Z∗n2 , where n is an RSA modulus. This scheme has
some very attractive properties, in that it is homomorphic, allows encryption
of many bits in one operation with a constant expansion factor, and allows
efficient decryption.[2]

Addition of ciphertexts is trivially easy, and multiplying ciphertexts by a constant is also
simple.

1.2 Paillier’s Threshold Variant

Working from Shoup’s threshold version of RSA in [4], Damg̊ard and Jurik propose in
[2] a threshold version of Paillier’s encryption scheme. Threshold encryption requires a
pre-determined number of decryption servers to collaborate on fully decrypting a message.
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Any collaboration between fewer than the specified number of decryption servers does not
result in a complete decryption.

When creating keys, variables w and l are chosen, resulting in 1 public key and l private
keys being generated, set with a threshold of w. It is necessary for at least w of these keys
to collaborate to decrypt a message encoded with the public key.

The process for decryption involves at least w decryption servers to obtain the same
ciphertext, and then apply their private key for decryption to produce a “partial decryp-
tion” or “share”, each partial decryption being shared with the remaining servers. Once a
server obtains at least w unique shares, that server can obtain the original plaintext.

Damg̊ard and Jurik also proposed a generalization of the Paillier cryptosystem, allow-
ing ciphertexts to range in Zns+1 for any s ≥ 1. Such a feature can even allows the receiver
to decide on s upon encryption and so can allow variable block lengths. In this imple-
mentation, we are more concerned with multiparty computations and so fix s to be one at
every step.

1.3 Multiparty Computation

Cramer, Damg̊ard, and Nielsen suggests a method of multiparty computation based on ho-
momorphic threshold cryptosystems [1]. Their method uses such a cryptosystem to create
a Boolean circuit to compute secure functions. The requirements for such computation
secure against active adversary is a cryptosystem that satisfies the following properties:

1. Addition of plaintexts From encryptions a and b (of plaintexts a and b, respec-
tively), it is easy to compute an encryption of a+ b.

2. Multiplication by a constant From encryption a and a constant α ∈ Zn, it is easy
to compute a random encryption of α · a.

3. Proving knowledge of plaintext If a process created an encryption a, it is easy
to give a zero-knowledge proof that it knows a.

4. Proving knowledge of multiplication If a process created an encryption of α · a
and broadcasts the encryptions α and a, it can give a zero-knowledge proof that the
decryption of that encryption is in deed the product of the decryptions of α and a.

5. Threshold decryption Given an encryption a and the corresponding public key
used to encrypt it, each process could use their private key and share their partial
decryptions so that each can securely compute a.

Cramer, et al. provided exactly those zero-knowledge protocols for the threshold variant
of Paillier, making multiparty computation possible using Paillier.
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1.4 The Packages

The intention of this suite is to provide the tools necessary to enable multiparty com-
putation based on the threshold variant of the Paillier cryptosystem. The requirements
enumerated above for such computation are all satisfied in Paillier and are provided to the
user of this package.

Three packages are included in this suite, namely:

paillierp which includes the encryption/decryption environments.

paillierp.keys which includes key objects needed for encryption and decryption.

paillierp.zkp which include non-interactive zero-knowledge proofs to prove knowledge
of a plaintext or multiplication or partial decryption.

Most numbers here are BigInteger objects, capable of representing numbers up to
2232−1. This includes plaintexts, ciphertexts, and the like.

1.5 What is this document?

This document is a manual to the paillierp packages. While the Javadoc for the imple-
mentation is rather thorough, this will provide a quick resource for basic usage without
specific mathematics.

2 paillierp.keys Package - Keys

In this cryptosystem, the primary step is key creation. Public keys are required for en-
cryption, and private keys are required for decryption. Public keys are derivable from the
private keys.

2.1 paillierp.keys.KeyGen - Key creation

In this static class, one can generate a single private key for the original Paillier encryption
scheme, or l partial private keys for the threshold variant of the same cryptosystem.

PaillierKey(int s, long seed) is used to create a random PaillierPrivateKey of
length s. Note that a seed is necessary for the randomness.

PaillierThresholdKey(int s, int l, int w, long seed) is used to create l random
PaillierPrivateThresholdKeys of length s, of which w must collaborate to produce
a decryption.

These two methods are the most necessary for random key generation. A further method
to eliminate randomness is also provided.
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2.2 paillierp.keys.PaillierKey and paillierp.keys.PaillierPrivateKey

As in the original version of the Paillier cryptosystem, the key is generated by choosing a
RSA modulus n = pq of k bits for p, q prime. Originally, an element g ∈ Z∗n2 is also chosen,
but we fix g to be 1 +n without loss of security (as given in [2]). The private key is a value
d which is the least common multiple of p− 1 and q − 1.

While the choosing of these random numbers is left to paillierp.keys.KeyGen, the
class PaillierKey holds the necessary values for a public key, PaillierPrivateKey for a
private key. The constructors vary in arguments to provide flexibility. For the public key,
the constructors are

PaillierKey(BigInteger n, long seed) Creates a new public key when given the mod-
ulus n.

PaillierKey(BigInteger p, BigInteger q, long seed) Creates a new public key from
a given two odd primes p and q.

PaillierPrivateKey(BigInteger n, BigInteger d, long seed) Creates a new pri-
vate key when given the modulus n and the secret value d.

PaillierPrivateKey(BigInteger p, BigInteger q, BigInteger d, long seed) Cre-
ates a new private key when given the primes p and q and the secret value d.

2.3 paillierp.keys.PaillierThresholdKey and
paillierp.keys.PaillierThresholdPrivateKey

In the Threshold variant, the key is generated by finding four unique primes, p, q, p′, q′ such
that p = 2p′+1 and q = 2q′+1. We let n = pq and m = p′q′. We picked d to be equivalent
to 0 mod m and 1 mod n.

From this, we generate a polynomial P (x) with random coefficients, hiding d = P (0)
as the secret key and si = P (i) for the ith partial key. These partial keys are distributed
in secrecy. In addition, public verification values are generated: the value v and a value
vi = v∆si mod n2, where ∆ = l!.

Only n is needed for encryption, but the further public values are included in the public
threshold key. A share key requires the entire set of public values as well as si and n. These
values are necessary for each partial decryption.

PaillierThresholdKey(BigInteger n, int l, int w, BigInteger v, BigInteger[]
viarray, long seed) Creates a new public key for the generalized Paillier threshold
scheme from the given modulus n, for use on l decryption servers, w of which are
needed to decrypt any message encrypted by using this public key.
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PaillierPrivateThresholdKey(BigInteger n, int l, int w, BigInteger v,
BigInteger[] viarray, BigInteger si, int i, long seed) Creates a new pri-
vate key for the generalized Paillier threshold scheme from the given modulus n, for
use on l decryption servers, w of which are needed to decrypt any message encrypted
by using this public key. The private value si is for this particular key ID i.

Other constructors are available which include the combineSharesConstant. That param-
eter is available for efficiencey at key distribution, but it can be computed by the other
values.

3 paillierp Package - Encryption environments

The paillierp package includes two encryption/decryption environments (one for the
original Paillier scheme, another for the threshold variant), and two utility classes used
by both the Zero Knowledge Proofs and Keys. Each encryption environment is a class
holding the key which allows encryption, decryption, the addition and multiplication of
ciphertexts. We provide a class of byte utilities for later transmitting keys and proofs, and
a partial decryption class for identifying partial decryptions (“shares”).

3.1 paillierp.Paillier - Original Paillier Encryption Environment

This class provides an environment for encrypting and decrypting, setting and retrieving
keys. There is a number of constructors allowing for automatically setting encryption or
encryption and decryption, depending if it sees a public or private key.

The environment will store a public key (for encryption) and a private key (for de-
cryption). To assign the public key, call setEncryption( PaillierKey ). To assign the
private key, call setDecryption( PaillierPrivateKey ), or to assign both for this case,
call setEncryptionDecryption( PaillierPrivateKey )

3.1.1 Encryption

Once a public key has been assigned to the encryption environment, whether by the
constructor or by setEncryption or setEncryptionDecryption, it is possible to call
encrypt( BigInteger m ) to encode a message m. The resulting BigInteger is the en-
crypted message.

Other encrypt methods are available, both static and otherwise, and are listed in the
online documentation.

3.1.2 Decryption

Once a private key has been assigned to the encryption environment, whether by the
constructor or by setDecryption or setEncryptionDecryption, it is possible to call
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decrypt( BigInteger c ) to decode a ciphertext c. The resulting BigInteger is the
original message.

Just like above, other decrypt are available for greater flexibility. There are static
and non-static methods, all of which are listed in the online documentation.

3.1.3 Other Utilities

As listed in Section 1.3, there are several attractive features that we would like to make
available to allow some computation. In the Paillier encryption environment, there is no
thresholding, making it impossible to provide the 5th feature, but features 1-4 are available
to this regular encryption environment.

1. Addition of Plaintexts is provided by add( BigInteger c1, BigInteger c2 ).
Given c1 the encryption of a and c2 the encryption of b, the resulting BigInteger
is an encryption of a+ b.

2. Multiplication by a constant is provided by multiply( BigInteger c, BigInteger
cons ). Given c the encryption of a, the resulting BigInteger is an encryption of
cons · a.

3. Proving knowledge of plaintext is provided by encryptProof( BigInteger ).
The result is a non-interactive Zero Knowledge Proof detailed in ??.

4. Proving knowledge of multiplication is provided by multiply Proof( BigInteger
, BigInteger ) to produce a non-interactive Zero-Knowledge Proof as detailed in
??.

static variants of the addition and multiplication methods are also available. Also
available are helpful utilities for random encryptions of 1 and of zero, and a method that
will randomize a ciphertext at no distortion of the original message.

3.2 paillierp.PaillierThreshold - Threshold Paillier Encryption Envi-
ronment

The threshold encryption environment provides an object through which one can encrypt
and decrypt. As in Paillier, there is a number of constructors to ensure maximum
flexibility.

3.2.1 Encryption

Encryption with PaillierThreshold is just the same as with Paillier in Section 3.1.1.
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3.2.2 Decryption

The decryption methods for PaillierThreshold differ from Paillier.
Once a private key has been assigned to the encryption environment, whetherby the cus-

troctor or by setDecryption or setEncryptionDecryption, it is possible to call decrypt(
BigInteger c ) to decode a ciphertext c. The result is a PartialDecryption, which is
not the original message. Rather, one must provide many PartialDecryption objects to
combineShares( PartialDecryption... ) to obtain a BigInteger which is the original
message; at least deckey.getW() must be provided, where deckey is the private key.

In order to fully decrypt a ciphertext c, the following must happen

1. One should partially decrypt a message c by invoking decrypt( c ). What results
is a PartialDecryption.

2. One must obtain at least w separate such PartialDecryptions generated by w inde-
pendent PaillierThreshold encryption environments with unique Paillier Thresh-
old Private Keys.

3. Combine the at least w partial decryptions by calling combineShares( share1,
share2, ..., sharew). The result is a BigInteger which is the original message.

3.2.3 Other Utilities

As above in 3.1.3, PaillierThreshold implements the full set of features needed for secure
multiparty computation.

1. Addition of Plaintexts is provided by add( BigInteger c1, BigInteger c2 ).
Given c1 the encryption of a and c2 the encryption of b, the resulting BigInteger
is an encryption of a+ b.

2. Multiplication by a constant is provided by multiply( BigInteger c, BigInteger
cons ). Given c the encryption of a, the resulting BigInteger is an encryption of
cons · a.

3. Proving knowledge of plaintext is provided by encryptProof( BigInteger ).
The result is a non-interactive Zero Knowledge Proof detailed in Section 4.

4. Proving knowledge of multiplication is provided by multiply Proof( BigInteger
, BigInteger ) to produce a non-interactive Zero-Knowledge Proof as detailed in
Section 4.

5. Threshold decryption is provided by decrypt and combineShares as detailed
above in 3.2.2. Further, proving knowledge of partial decryption is provided
by decryptProof( BigInteger ).
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3.3 paillierp.ByteUtils - Byte Manipulation Utilities

ByteUtils is a bundle of static, byte manipulation methods for the toByteArray methods
as listed in Section 5.

3.4 paillierp.PartialDecryption - Product of Threshold Decryption

This is simply a wrapper of a BigInteger and an ID number for the purposes of decryption
with PaillierThreshold as detailed in Section 3.2.2.

4 paillierp.zkp Package - Non-interactive Zero Knowledge
Proofs

For secure multiparty computation, Cramer, et al. in [1] requires a cryptosystem to have
five capabilities as listed on p. 4 in [1] (reproduced in this documentation at Section 1.3).
To ensure complete security in these computations, even against malicious attacks, they
have required two proofs of computation, viz. a proof that one knows the plaintext for
a ciphertext and a proof that one knows a constant and has multiplied a ciphertext by
that constant. A further proof has been developed to provide proof that one has indeed
partially decrypted a ciphertext.

Zero Knowledge Proofs is a method for one party to prove the veracity of a mathematical
statements, without revealing particular numbers of that statement. Standardly, a zero
knowledge proof is an interactive protocol for proving the veracity of the statement, where
an input is given from without. On the other hand, a non-interactive proof is one which
automatically chooses the input by something just as random as the possible input from
without: the automatic input is the hash of the proving variables.

Each of the original values are required in the constructors. That is to say, for example,
EncryptionZKP requires knowledge of the plaintext and the private key before generating
a zero knowledge proof. Nothing of sensitive data will be saved. But for the paranoid,
methods and constructors for saving these objects as byte arrays are available.

Each object generates the new ciphertext or partial decryption retrievable by getValue(),
and the method verify() recomputes the hash to provide veracity of the values. Also,
verifyKey( Paillier(Threshold)Key ) is available to ensure all public values used in
the proof correspond with the given key.

EncryptionZKP This provides knowledge that one knows the plaintext of a given en-
cryption. This protocol is described on page 40 of [1].

MultiplicationZKP This provides knowledge that one has multiplied a ciphertext by a
constant which only the multiplier knows. The protocol is from page 40 of [1].
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DecryptionZKP This provides knowledge that one has indeed partially decrypted a ci-
phertext. The method is found on pages 16-17 of [3].

5 Transferring information

Transferring of both public and private keys, and of the PartialDecryption wrapper and
of each zero knowledge proof is made easy in this package. Not only are they serializable,
but they also are given a toByteArray() method to specifically encode the object as a byte
array for communication. Each of the above objects are also given a constructor which
takes as input the byte array as specifically engineered by that object’s toByteArray().

6 Example

We close with an example of the paillierp package, particularly PaillierThreshold.

1 package testingPaillier;

3 import paillierp.Paillier;

import paillierp.PaillierThreshold;

5
import java.math.BigInteger;

7 import java.util.Random;

9 import paillierp.key.KeyGen;

import paillierp.key.PaillierPrivateThresholdKey;

11 import paillierp.zkp.DecryptionZKP;

13 public class Testing {

public static void main(String [] args) {

15
System.out.println (" Create new keypairs .");

17 Random rnd = new Random ();

PaillierPrivateThresholdKey [] keys =

19 KeyGen.PaillierThresholdKey (128, 6, 3, rnd.nextLong ());

System.out.println ("Six keys are generated , with a threshold of 3.");

21
System.out.println ("Six people use their keys: p1, p2, p3, p4, p5, p6")

;

23 PaillierThreshold p1 = new PaillierThreshold(keys [0]);

PaillierThreshold p2 = new PaillierThreshold(keys [1]);

25 PaillierThreshold p3 = new PaillierThreshold(keys [2]);

PaillierThreshold p4 = new PaillierThreshold(keys [3]);

27 PaillierThreshold p5 = new PaillierThreshold(keys [4]);

PaillierThreshold p6 = new PaillierThreshold(keys [5]);

29
System.out.println ("Alice is given the public key .");

31 Paillier alice = new Paillier(keys [0]. getPublicKey ());
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33 // Alice encrypts a message

BigInteger msg = BigInteger.valueOf (135819283);

35 BigInteger Emsg = alice.encrypt(msg);

System.out.println ("Alice encrypts the message "+msg+" and sends "+

37 Emsg+" to everyone .");

// Alice sends Emsg to everyone

39
System.out.println ("p1 receives the message and tries to decrypt all

alone :");

41 BigInteger p1decrypt = p1.decryptOnly(Emsg);

if (p1decrypt.equals(msg)) {

43 System.out.println ("p1 succeeds decrypting the message all alone .");

} else {

45 System.out.println ("p1 fails decrypting the message all alone. :(");

}

47
System.out.println ("p2 and p3 receive the message and " +

49 "create a partial decryptions .");

DecryptionZKP p2share = p2.decryptProof(Emsg);

51 DecryptionZKP p3share = p3.decryptProof(Emsg);

// p2 sends the partial decryption to p3

53 // p3 sends the partial decryption to p2

55 System.out.println ("p2 receives the partial p3’s partial decryption " +

"and attempts to decrypt the whole message using its own " +

57 "share twice");

try {

59 BigInteger p2decrypt = p2.combineShares(p2share , p3share , p2share);

if (p2decrypt.equals(msg)) {

61 System.out.println ("p2 succeeds decrypting the message with p3.");

} else {

63 System.out.println ("p2 fails decrypting the message with p3. :(");

}

65 } catch (IllegalArgumentException e) {

System.out.println ("p2 fails decrypting and throws an error ");

67 }

69 System.out.println ("p4, p5, p6 receive Alice ’s original message and " +

"create partial decryptions .");

71 DecryptionZKP p4share = p4.decryptProof(Emsg);

DecryptionZKP p5share = p5.decryptProof(Emsg);

73 DecryptionZKP p6share = p6.decryptProof(Emsg);

// p4, p5, and p6 share each of their partial decryptions with each

other

75
System.out.println ("p4 receives and combines each partial decryption" +

77 " to decrypt whole message :");

BigInteger p4decrypt = p4.combineShares(p4share , p5share , p6share);

79 if (p4decrypt.equals(msg)) {
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System.out.println ("p4 succeeds decrypting the message with p5 and p6

.");

81 } else {

System.out.println ("p4 fails decrypting the message with p5 and p6.

:(");

83 }

}

85 }
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