Sample Problem 1

1. Implement an interpreter for the call-by-name untyped λ-calculus in either ML or OCaml. Your code should use the following datatype definitions:

```
datatype exp = Var of string
             | Lam of (string*exp)
             | App of (exp*exp)
```

evaluation is given by

```exception UnboundVar```

For example, the λ-calculus expression \( \lambda x. (xx) \) would be represented as the ML/OCaml value `Lam("x",App((Var "x"),(Var "x")))`. Your interpreter implementation should consist of two functions:

(a) Implement a function `subst` such that `(subst "x" e2 e1)` yields the result of the capture-avoiding substitution \( e_1[e_2/x] \). Your function should therefore have type

```
subst : string → exp → exp → exp
```

(b) Recall that every λ-calculus expression \( e \) either terminates yielding an expression of the form \( \lambda x. e_2 \) or loops infinitely. Implement a function `eval` such that if \( \lambda \)-calculus expression \( e \) yields \( \lambda x. e_2 \) then `(eval e)` returns the pair \(("x",e2)\), and if \( e \) loops infinitely then `(eval e)` loops infinitely. If you encounter an unbound variable while evaluating expression \( e \), use `raise UnboundVar` to throw an exception and thereby halt evaluation. Your function should therefore have type

```
eval : exp → (exp*exp)
```

Sample Solution

1. (a) OCaml implementation:

```ocaml
let rec subst x e2 e1 = (match e1 with
 | Var y -> if y=x then e2 else e1
 | Lam (y,e) -> if y=x then e1 else Lam (y,subst x e2 e)
 | App (e3,e4) -> App (subst x e2 e3, subst x e2 e4));;
```

ML implementation:

```ml
fun subst x e2 (Var y) = if y=x then e2 else e1
| subst x e2 (Lam (y,e)) = if y=x then e1 else Lam (y,subst x e2 e)
| subst x e2 (App (e3,e4)) = App (subst x e2 e3, subst x e2 e4);
```

1
(b) OCaml implementation:

```ocaml
let rec eval e = (match e with
 | Var x -> raise UnboundVar
 | Lam (x,e) -> (x,e)
 | App (e1,e2) -> let (x,e)=(eval e1) in eval (subst x e2 e));;
```

ML implementation:

```ml
fun eval (Var x) = raise UnboundVar
| eval (Lam (x,e)) = (x,e)
| eval (App (e1,e2)) = let (x,e)=(eval e1) in eval (subst x e2 e);
```
Sample Problem 2: Denotational Semantics of a Relational Database Language. 50 pts

Consider an SQL like relational database programming language. Programs in this language manipulate a relational database. A relational database (RDB) stores a table (collection of tuples) for each relation name. Thus, each relation can be regarded as a collection of tuples.

(12 pts) Define a semantic algebra for this database domain which supports the following operations Note: all definitions should be in proper lambda calculus format and should take care of error situations:

- **create**: creates an empty database.
- **retrieve(database, relname)**: given a relation name in a database it returns the table corresponding to that relation.
- **store(database, relname, table)**: given a relation name in a database and a table, it stores the table in the database under that name.

Assume that \textit{table} has as its domain
\[
table = key \rightarrow onetuple
\]
and
\[
onetuple = key \times list
\]
where \textit{key} = \texttt{Nat} (set of natural numbers) and \textit{list} = \texttt{Nat}^* (list of natural numbers). Thus, a collection of tuples is modeled as a function. Each tuple is modeled as a pair, whose first element is the primary key and the second element is a list of remaining elements of the tuple. Note: DO NOT USE YOUR OWN DOMAIN DEFINITIONs for \textit{table}, \textit{onetuple}, \textit{key}, or \textit{list}.

(13 pts) Extend the semantic algebra with the following operations:

- **create-rel(database, relname)**: given a database and a relation name, it initializes this relation to an empty collection of tuples in the database.
- **access(database, relname, key)**: given a database, a relation name, and a key, it returns the tuple in the relation that matches the key.
- **update(database, relname, newtuple)**: given a database, a relation name, and a tuple, it adds or updates the relation relname with tuple \textit{newtuple} where \textit{newtuple} is of type \textit{onetuple} (note that the key can be extracted from the \textit{newtuple}; if a tuple with that key is already present, it is replaced, if not, the tuple \textit{newtuple} is added).

Now consider part of the Grammar for expressions in the database language:
\[
C' \in \text{Commands}
\]
\( E \in \text{Relational-Expression} \)
\( C ::= R[D] ::= E \)
\( E ::= E_1 \bowtie E_2 \mid E_1 - E_2 \mid \pi_n(E) \mid R(D) \)

with the meanings:

1. In the productions above, \( R[D] \) refers to the table corresponding to relation \( R \) in database \( D \). A relational expression \( E \) returns a table (collection of tuples).

2. \( R(D) ::= E \) computes result of relational expression \( E \) and stores under the relation name \( R \) in Database \( D \).

3. \( E_1 \bowtie E_2 \) is the usual relational database join of two relational expressions \( E_1 \) and \( E_2 \). Two tuples \((k, l_1)\) and \((k, l_2)\) that have the same key and that have been joined will appear as \((k, \text{append}(l_1, l_2))\) in the resulting relation.

4. \( E_1 - E_2 \) produces a relation that is obtained by removing from relational expression \( E_1 \) the tuples of relational expression \( E_2 \) that are also present in \( E_1 \).

5. \( \pi_n E \) takes a relational expression \( E \) as input and produces the relation consisting of 2 element tuples where the first element is the key in the tuples of relation returned by \( E \) and the second element is the \( n \)th element of the tuples of relation returned by \( E \).

\((25 \text{ pts})\) Give the valuation function of \( C \) and \( E \). Note that some functions may be recursive.

Solution: Will be made available soon.