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Abstract—The widespread availability of applications for forg-
ing multimedia data bolsters the need for their detection and
localization especially in autonomous decision-making systems
such as autonomous vehicles. Traditional and machine learning
methods have been researched extensively for the detection of
the same in 2D images but are scarce for the 3D point cloud.
Recent trends have seen a shift to leverage the power of deep
learning. While recent studies have proposed deep learning-
based architectures for accurate detection of forgery in 2D,
studies in detection and localization in 3D, in general, are still
in preliminary stages. We propose a Forgery Detection and
Localization network (FDL-Net) that accurately detects in 2D and
localizes the forgery simultaneously in 2D and 3D point cloud.
Such a Vision Based Measurement (VBM) system can compute
the probability of forgery for each pixel in the image and predict
the tampered area ultimately. We train FDL-Net on groups of
Easy, Medium, and Hard automatically-generated attacks on
RGB and point clouds, based on the KITTI Object Recognition
dataset. FDL-Net is able to detect and localize forgery with a high
Intersection over Union scores of 0.9773, 0.9324, and 0.73451 for
each group respectively and localize the region of attack in 2D
stereo RGB and 3D point cloud in less than 300 milliseconds.
In comparison to current state-of-the-art architectures, FDL-Net
is superior in its ability to detect and localize not only Easy,
Medium but also Hard attacks that are not visible in most cases
to the naked eye. To show that our proposed end-to-end network
can be a general approach to segment the forged area within the
streaming data, we compare its performance with other state-
of-the-art methods on benchmark datasets such as CASIA V1.0
and CASIA V2.0.

Index Terms—Autonomous Driving, convolutional neural net-
works, Forgery Localization, Forgery detection, 3D point cloud,
Computer Vision, Self-driving Vehicles, Attacked Dataset

I. INTRODUCTION

AS enthusiasm and demand for autonomous vehicles and
shipment robots grow, the need for a system to authenti-

cate the data captured by these self-driving vehicles becomes
urgent to address. To be able to navigate, such a system has
to collect data to sense the environment around them. The
sensors, installed on them, are a pair of stereo RGB cameras
that collect the 2D information (as left and right views) and 3D
LiDAR (Light Imaging Detection and Ranging) sensors that
collect the depth information by the concept of time of flight.
The latter captured information (in 360 degrees) is considered
as an unstructured 3D point cloud where each point is stored
as coordinates of X, Y, and Z.
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For safer operations of such a system, typically remote
human operators are employed to observe and track the
behavior of the autonomous vehicle by streaming the stereo
camera and the LiDAR data. During this streaming of data
over a network, the data from the autonomous vehicles are
potentially vulnerable to attacks. Hackers can manipulate the
data on the transmission and mislead the vehicle and the
human operator in the loop. To prevent and minimize the risk
of the tampered data, an authentication model is necessary to
identify the forged data and enable the autonomous vehicle
to make the best decision in near real-time, which represents
essentially an approximation of time performance of our test
cases.

As discussed in [1] [2], vision-based measurement has been
leveraged in various automated applications from analyzing
the state and intention of the drivers by monitoring their face
and predicting any potential human errors to eliminate the
accident chance [3] [4] or sensing the environment, detecting
objects and finding the path by robots [5] [6] to counting
the calories and detecting nutrition of food by analyzing the
meal picture [7]. Following the requirements mentioned in
[2], our work is a VBM system involving data collected from
vision sensors installed on autonomous vehicles, creating an
appropriate dataset, and proposing a deep learning approach to
authenticate vision data used for measurement and monitoring
of autonomous vehicles/robots.

A. Proposed Approach

In this paper, we propose a novel neural network approach,
FDL-Net (Forgery Detection and Localization Network), to
detect and localize the forgery without any pre-processing or
post-processing step. Our proposed Vision Based Measure-
ment (VBM) model not only detects forgery very accurately
but also localizes it in 2D and 3D in near real-time. Likewise
the human eyes that may visually detect and localize the
tampered area by evaluation of the entire image to recog-
nize different shades, sharp borders, or even different quality
around the tampered area, FDL-Net learns such above men-
tioned differences by detecting statistical anomalies introduced
at the pixel level. In this way, if the digital forgeries do not
leave any clue for tampering and consequently human eyes
are not able to catch it, there is still this chance that our
approach detects it due to the altered statistics. By extracted
discriminative features, the model can measure the probability
of forgery for each pixel and localize the forged area at the
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Fig. 1. Our Proposed Flow Diagram.

image level in near real time. The perceived level of danger for
an autonomous car depends on the distance. The reaction time
to detect and localize the attack is required to be much lower
for attacks that are closer to the car making near real-time
a crucial requirement. On the other hand, the farther attacks
that manifest as smaller regions of attack require an accurate
model as they are hard to detect.

The FDL-Net is a U-Net [8] style network to extract
more robust features with respect to more complicated input
data. The architecture of the vanilla U-Net that is originally
designed for biomedical image segmentation, consists of two
paths, contracting (or encoder) and expansive (or decoder).
The contracting path, used for feature extraction purpose, is
built of several convolutional layers followed by downsam-
pling layers (that can be considered as an issue in segmentation
task as we discussed later). In the expansive path, used for
predicted mask construction, they have an up-sampling step
followed by a convolutional layer that leads to halving the
number of feature channels and then be concatenated with the
corresponding feature map extracted from the contracting path.
In the last layer, there is a convolutional layer to classify each
pixel based on the final feature vector.

Convolutional Neural Network approaches leverage the
down-sampling layers in the architectures to reduce the com-
putational cost however, down-sampling layers lead to loss of
valuable information. For instance, in a tampered image that
contains a small area under attack, the ratio of forged pixels to
non-forged pixels is very small. Therefore, the down-sampling
steps in the network can lead to loss of information such as
forged pixels resulting in the failure of the model.

In FDL-Net, we chose a different backbone (which is
not including any down-sampling step) to extract the robust
features of the input data and used a hybrid loss function
to diminish the effects of the imbalanced dataset. The model
obtained by FDL-Net is used to localize the area under attack
in stereo RGB images. Then, we are able to map the extracted
area in 2D to 3D point cloud data by camera calibration
parameters and 3D K-Nearest neighbors.

Figure 1 shows the operation sequence of the proposed
approach to localize forged area in 2D RGB images and 3D
point cloud data. Having detected and localized forgery in
RGB images, we proceed to localize the same in the 3D point
cloud. The segmentation mask obtained from the FDL-Net

model is essentially a localization of the forged area in 2D.
The center of the segmentation mask is computed from the
extracted bounding box of the segmented region. The center
point presenting the forged region in 2D is then mapped to
the point of interest in 3D. We then compute the region of
attack in the 3D point cloud by running a 3D K-NN search.
The details are furnished in later sections.

To train the FDL-Net, we utilize the framework introduced
in ADD-FAR [9] to create a dataset based on the KITTI
3D Object Benchmark Suite [10] automatically. This attacked
dataset meets our requirements and consists of tampered 2D
RGB images and ground truth segmented masks, correspond-
ing 3D point cloud data and camera calibration parameters
which used for forgery localization in 3D point cloud data.

Our Contributions The proposed approach works in near
real-time: the average time for forgery localization is around
66 milliseconds giving the ability to raise alerts about the
forgery almost immediately. The localization of the detected
forgery in 3D LiDAR data, run on a machine without GPU,
takes around 200 milliseconds (due to the voluminous nature
of the point cloud data) and can facilitate near real-time
process for subsequent threat evaluation and mitigation. Exper-
imental results show that the proposed FDL-Net can identify
forged pixels in RGB images even when the ratio of the forged
pixels to the entire scene’s pixels (i.e., forgery ratio) is very
low. FDL-Net can detect and localize forgery with high IoU
(Intersection over the Union) scores of 0.9773, 0.9324, and
0.73451 in images with forgery ratios of 0.06 (Easy attacks),
0.026 (Medium attacks), and 0.005 (Hard attacks).

II. RELATED WORK

Manipulation of multimedia data is primarily of two types
namely Steganography and Tampering and their detection
methods can be categorized as proposed by A. Piva et. al [11]
into Active and Passive Approaches. The Active Approaches
have some source information and use methods such as
Watermarking and Digital Signatures. For instance, Bahirat
et. al [12] proposed a watermarking based framework for
Authentication and Localization of tampering in RGB and
3D point cloud. On the other hand, Passive Approaches also
referred to as Blind Forensics [13] primarily deal tampered
data where source information is not available. While all the
methods have been progressively getting better, deep learning
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Fig. 2. Examples of each type of attacks in our automatically generated dataset (forged KITTI dataset) a) Easy, the man approaching to the camera is the
forged object in the scene, b) Medium, the red SUV driving ahead of the autonomous vehicle, and c) Hard, forged object is the silver car, far from the
autonomous vehicle. Note that the tampered region is indicated by bounding box in yellow and the number of forged pixels is 32332, 6080, and 1344 out of
over 450K for each type, respectively.

based tampering detection approach handles the drawback of
having to try various forensic tests to understand how the
image has been tampered and also the needs to balance false
positives and negatives of those tests as pointed out by B.Bayer
et. al [14].

This drawback motivates the need for tampering detection
and localization techniques for automated systems. Many deep
learning architectures have been proposed aimed at building
better models, some require extensive feature engineering
[15] while others introduced new layers for better feature
learning [14], new architectures such as triple network with
conditional random fields [16], and auto-encoder based feature
extraction and labelling [17]. For different deep learning ar-
chitectures, various training methods have also been proposed
such as transfer learning [18], extracting features through
deep networks followed by traditional machine learning for
classification [19], patch based learning especially when the
dataset is small [14][15][19][20]. The patch based approach
though successful in achieving high accuracy involves a lot
of pre-processing and is prone to errors during relabelling
the patches. The overhead of pre-processing keeps the system
from being near real time. The above discussed methods
though successful in detecting forgery cannot localize the
forged area.

B. Liu et. al [21] worked at detection and localization of
forgery but the model overfits the data, X. Wang et. al [22]
used Mask R-CNN and Sobel edge detection filter to focus on
manipulated boundaries and [23] used multiple convolution
branches and merge them which has an higher overhead. R.
Yancey et. al [24] used two-stream faster RCNN network,
one stream takes RGB data as input while the other one
takes a noise filter, ELA (Error Level Analysis) that helps to
find the area of interest by identifying different compression
levels within an image. But, this approach works for JPEG
images only. The authors in [25] used another noise stream
instead of ELA. It extracts the noise features by passing the
image through a Steganalysis Rich Model (SRM) filter that
finds the noise inconsistency between pristine and doctored
areas. This approach cannot be considered as a general method
when the un-tampered and tampered regions captured by the
same camera brand and model since they have the same
noise specification. The last two recently discussed approaches
output the forged area as a rectangular bounding box, not
showing the fine coarse border around the region of interest.
Without having above mentioned restrictions, our proposed
approach has the advantage of near real time prediction and
localization on CASIA V1.0 with a higher accuracy than that

of Salloum et. al [23].

III. ATTACK MODEL AND DATASET

With the increasing use of autonomous vehicles, there has
been a push towards the need for monitoring them both for
security as well as the correctness of decision making. In fact,
the State of California has a legislation that requires human
operators to remotely monitor the movement of such vehicles
during testing [26]. This implies streaming of the video data
– typically, stereo RGB camera data as well as 3D LiDAR
(Light Detection and Ranging) data – from the vehicles to the
remote human operator. This introduces the potential risk of
the video stream from the car to the remote operator being
hacked. A maleficent system or user can try to manipulate the
stream of stereo RGB video frames and/or 3D LiDAR scans
and create attacks to misguide the autonomous vehicle. This
motivates the requirement to detect and localize forgery in
autonomous systems in near real time. The attack can take
place on all modalities of data collected by the system during
the process of collection, transmission from the car to remote
operator. In this paper, we consider an attack model where the
stereo RGB images are attacked by introducing new objects
into the scene. Then, we utilize a post-processing technique
such as blurring to smooth the tampered region contours to
make the sharp edges of the attacked area invisible. Based
on this attack model, we introduced attacks in the stereo RGB
images in the KITTI dataset, as explained in Section III-A. We
can classify the manipulated images in the data set into three
categories in terms of the distance of the forged object from the
autonomous vehicle: (a) Easy, easily detectable forged image
that contains forged area closer to the vehicle (It means it
contains larger number of forged pixels). (b) Medium type
contains those attacked images with forged area, not close nor
far from the autonomous vehicle. And (c) Hard category deals
with images where the attack is far from the vehicle making
it hard to detect (the forged object is farther and smaller due
to which the number of forged pixels is much less).

Figure 2 depicts examples of such created RGB images from
the dataset. It may seems the area under attack is visually
detectable by human eyes in most of the cases in existing
datasets, however automated detection of forged areas in such
manipulated images and localization of the attacked region
in the corresponding LiDAR data, are still a challenge as we
show through our experiments. Unlike semantic segmentation
that localizes each meaningful object in the scene it needs to
focus on the difference between forged and non-forged pixels’
distributions to extract the discriminative features.
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A. Dataset Generation

The existing tampered datasets, to our best knowledge, are
not suitable for our purpose due to the following reasons:

• The contents of the image should be appropriate for
outdoor environment such as cars, trucks, pedestrians,
roads and, so on. As Khanafer et. al. described in [1]
if the dataset used for training a model is not adequately
representative of the real world situation, it may leads to
systematic effects which increase the uncertainty.

• The dataset should consist of tampered stereo right and
left color images, corresponding 3D point cloud data,
camera calibration parameters, and ground truth segmen-
tation mask that shows the attacked area in tampered
RGB image.

For instance, CASIA V2 [27] as a tampered dataset, consists
of 5123 manipulated images, cannot meet our requirements.
Thus, this issue has encouraged us to exploit the framework
introduced in ADD-FAR [9] to generate automatically the
doctored data based on KITTI 3D object recognition dataset
[10]. Each instance in this public dataset includes a pair of
stereo images (left and right), 3D point cloud data, camera
calibration parameters/matrices and training labels of objects
in the scene. Moreover, we blur the edges of forged area to
conceal or smooth the sharp edges of added object into the
scene.

The automatically generated dataset contains different sce-
narios of attack and each scenario includes a tampered RGB
image, its corresponding ground truth mask that shows the
forged area in the RGB image, and tampered point cloud data.
This attacked dataset is categorized in different levels of risk
mentioned in [12] such as Easy, Medium and Hard as defined
in Section III.

Note that the same approach is applied for generating
both, left and right sides of attacked data on left and right
sides of RGB images captured by stereo camera installed on
autonomous vehicle.

Totally, our automatically generated dataset (based on left
stereo images) consists of 5825 different scenarios, including
1634 tampered data in Easy category, 2200 in Hard category,
and 1991 in Medium category. Also, the 2D images are varied
in size with an approximated value of 1242 × 375 pixels.
Although human eyes can visually detect the region under
attack in the most cases, it’s challenging for an automated
system to detect, localize and map it to 3D point cloud. Also,
it’s worth to note that in the process of tampering the data,
the attackers cannot create very sophisticated and elaborated
forgery in real-time so, our generated dataset is a suitable fit
for this application although the FDL-Net can compete with
state-of-the-art networks on benchmark datasets. The dataset
will be made public after the paper review is completed.

IV. FORGERY LOCALIZATION CHALLENGES

There are several challenges in localizing forged area in 2D
images and 3D point cloud data using deep-learning networks:

• We need to detect and localize the attacked area in 2D
and 3D point cloud data in near real time.

• The ratio of the forged pixels (forgery ratio) to the
entire scene’s pixels is small approximately 0.06 for Easy
attacks. This leads to an imbalanced pixel ratio between
the forged and pristine pixels. For a segmentation task,
such an imbalance affects the model’s performance. This
problem manifests on a larger scale in Medium and Hard
cases where the ratio drops to approximately, 0.026 and
0.005 respectively.

• Mapping the localized region from RGB to 3D LiDAR
data in the form of bounding box poses a challenge owing
to the sparse nature of point cloud. The bounding box
loses its semantic structure when mapped directly from
RGB to Point Cloud.

A. Deep network Architecture choices and challenges

We can consider two types of deep-learning architec-
tures for forgery detection: (a) Classification-oriented; (b)
Segmentation-oriented.

a) Classification-oriented Architectures: In order to clas-
sify whether an RGB image is manipulated or not, there
are a variety of deep-learning architectures for classification,
that can be used along with transfer learning. Such networks
predict whether there exists any forgery in the image as a
whole. However, they are unable to localize the region of
image that has been attacked. As an experiment, we selected
VGG16 as an image-wise classifier, and trained it by transfer
learning technique (Using pre-trained model on ImageNet
[28]) with our generated dataset described in Section III-A
to predict whether an image is forged or not. Each instance
of the dataset is an RGB image, labeled as forged (positive
class) or pristine (negative class). The results showed that over
95 percent of the images of test set classified correctly by the
trained model. Although it can be considered a valid model to
detect the majority of forged images, it could not localize the
forged area in the images that were classified as attacked.

b) Segmentation-oriented Architectures: perform image
segmentation by classifying pixels into different segments. For
instance, U-Net [8] is one such architecture originally designed
for biomedical image segmentation. We trained U-Net on our
dataset to localize the forged area in the RGB image data.
Here, forgery detection is posed as a binary classification task
where we need to label each pixel of each image in training
dataset as forged or non-forged via a segmented mask. This
binary mask shows pixels in two colors. In the training model
we used, pixels in white represent forged pixels and those in
black represent the non-forged pixels. We trained the U-Net
model with the use of Binary Cross Entropy as loss function
to do pixel-wise classification. The experimental results show
the validation accuracy to be almost 92 percent, i.e., the model
can classify 92 percent of total pixels of all images in test
set correctly.

However, when we generated the predicted mask for the
forged area in each single image in the test set, we observed
that it cannot find the location of attacks in most of the
Hard and Medium attacked images, though its performance is
acceptable in predicting segmentation mask for large forged
area in Easy type. In other words, the majority of pixels that
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classified correctly lay in those attacked images with larger
forged area. These experiments show that U-Net can help us
segment the forgery area but it needs some improvements to
work for all types of attack with a reasonable accuracy. These
improvements need to address the following challenges:

• High resolution images and more complicated back-
ground: The dataset of forged images generated using
KITTI dataset has higher resolution and more complex
background than biomedical images. Hence, the structure
of traditional U-Net introduced in [8] cannot extract
robust features, and then generate segmentation mask for
our problem. Therefore, we need a proper architecture
to learn discriminative features and predict forgery accu-
rately.

• Small ratio of forged pixels to non-forged pixels: This
resulted in the traditional U-Net model’s poor perfor-
mance on Hard and Medium attacked data in terms of
its inability to generate the segmentation mask for the
forged area.

• Imbalanced number of non-forged and forged pixels:
affects the detection and generation of the mask even in
Easy attacks.

V. FDL-NET: FORGERY DETECTION AND LOCALIZATION
NETWORK

To identify and localize the forged area in 2D images, we
take advantage of the U-Net by modifying the architecture
using a backbone structure borrowed from the family of
EfficientNets for the purpose of extracting more fine-grained
patterns. This backbone is utilized in contracting path of our
U-Net style network. Inspired by [29], we select the hybrid
loss with contribution of both losses, focal and dice loss to
train the FDL-Net. We address the challenges described in
Section IV-A and justify the solutions as follows:

1) To handle the challenge of high resolution images and
complicated background, we need to choose an archi-
tecture for contracting path to be more sophisticated
than the one used in standard U-Net so that to be able
to extract the more robust features. Intuitively, making
the network architecture deeper makes sense because
we need to add more layers to increase the receptive
field for high resolution images. Moreover, adding more
channels helps to capture more sophisticated and subtle
patterns on the more complex image. Also, considering
the need for a near real time model for localization
task, we choose the backbone from EfficientNets [30]
family. We selected EfficientNetB4 as a backbone for
FDL-Net through experiments explained in Section VI.
Note that the expansive path is almost symmetric to the
contracting path in U-Net style architecture.
In EfficientNet [30], the authors apply a search algorithm
called NAS (Neural Architecture Search) [31] to find
a baseline architecture with less parameters but with
higher accuracy than some architectures with more pa-
rameters such as ResNet-50 or Inception-v2. Then, by
compound model scaling with aspects of depth, width
and image size they scale the baseline to larger net-
works so that the most scaled network, EfficientNetB7

achieves state-of-the-art performance on ImageNet in
terms of accuracy but having considerably less pa-
rameters. This leads to obtaining a model containing
less trained weights and satisfies the aspect of lower
inference response time in prediction.
The building block used in EfficientNets is MBConv,
mobile inverted bottleneck, [31] [32], to which they use
squeeze-and-excitation optimization [33] that helps to
improve performance of state-of-the-art neural network
architectures and minimize the computational cost.

2) By training the traditional U-Net with BCE (Binary
Cross Entropy) as a loss function, the obtained model
is not able to alleviate the poor performance caused by
the small ratio of forged pixels to non-forged pixels.
This leads to the poor performance on the most of the
Hard and Medium attacks. We incorporate focal loss
[34] that reduces the weight of the contribution of easy
examples so that the network focuses more on hard
examples. This loss makes the model learn classifying
of misclassified pixels correctly and helps to conquer
the problem of having very small forged area located in
Hard and Medium attacks.

3) As we discussed earlier, the dataset is imbalanced since
the forged area is very small in comparison with the
entire size of 2D image even in Easy type attacks. To
deal with the problem of this imbalance between the
number of forged and non-forged pixels in each image,
dice loss has a crucial impact by learning the class
distribution [35].
The total loss is formulated as the summation of binary
Focal loss and Dice loss:

Ltotal = LDice + λLFocal (1)

where λ is a parameter for trade-off between dice loss
and focal loss. In our case, we set it to 0.5 since
the model performance improves when we empirically
try different values such as 0.3, 0.5, and 1. According
to calculation of each of them in [29] dice loss and
focal loss (that in our case, it’s binary focal loss) are
formulated as:

LDice = C −
C−1∑
c=0

TP (c)

TP (c) + αFN(c) + βFP (c)
(2)

LFocal = −
1

N

C−1∑
c=0

N∑
n=1

gn(c)(1− pn(c))2 log(pn(c))

(3)
Where,
True Positives for class c, represented as TP (c),
False Positives for class c, represented as FP (c), and
False Negatives for class c, represented as FN(c) are
calculated by pn(c), prediction probabilities of pixel n
given class c, and ground truth probabilities for pixel n
given class c.
TP (c), FP (c), and FN(c) (for each image) can be
computed as:
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TP (c) =

N∑
n=1

pn(c)gn(c)

FN(c) =

N∑
n=1

(1− pn(c))gn(c)

FP (c) =

N∑
n=1

pn(c)(1− gn(c))

α and β used in dice loss are the trade-offs of penalties
for FN(c) and FP (c) that set to 0.5 since we intend to
make them balanced. C is the total number of classes,
that in our problem, are forged and non-forged (or
background) and N used in formulas is the total number
of pixels in each image.

A. Evaluation Metrics

To evaluate our model performance, we use metrics such
as Intersection over Union (IoU) score, that is the intersection
of ground truth mask and predicted mask over the union of
them, and F1-score formulated as:

IoU =
maskgr ∩maskpred
maskgr ∪maskpred

(4)

F1score =
2 ∗ TP

2 ∗ TP + FN + FP
(5)

Intersection over Union measures the overlap between 2
boundaries. We use that to measure how much our pre-
dicted mask overlaps with the ground truth mask. We set
Intersection over Union threshold to 0.5. Also, to balance
between Precision and Recall we use F1-score to measure
this balance. Precision represents a count of how many of
the predicted positives are actually positives and Recall is a
measure how many of actual positives the model can catch out
of all positively labeled. Precision and Recall in terms of True
Positives, False Negatives and False Positives are formulated
as:

Precision =
TP

TP + FP
=

TruePositive

TotalPredictedPositive
(6)

Recall =
TP

TP + FN
=

TruePositive

TotalActualPositive
(7)

B. Rationale for Backbone Choice

In this section, we summarize different experimental results
to choose a desirable backbone for modifying the U-Net style
architecture. We choose couple of architectures to extract the
discriminative features for contracting path of our U-Net style
network such as MobileNetV2, and some from EfficientNets
family (to the extent of our resources capabilities).

Among mobile-sized networks, first we try MobileNetV2
[32] as a backbone for modifying U-Net style architecture
then select different architectures from EfficientNets family,
such as EfficientNetB0 (the baseline of EfficientNet family),
EfficientNetB3, and EfficientNetB4. As shown in Table I,

the performance of MobileNetV2 and EfficientNetB0 is not
adequate for Hard cases. However, by increasing the number
of parameters we observe better performance. Among all four
choices, EfficientNetB4, as a backbone for our U-Net style
architecture, has a better performance to detect and localize
forged area in all types of attacks, especially Hard attacks,
thus we select it to use in FDL-Net as a backbone.

Figure 3 shows the architecture of FDL-Net that is a U-Net
style network with EfficientNetB4 as backbone.

C. 3D Localization Using FDL-Net Segmentation

As shown in Figure 1, the proposed approach detects and
localizes the area of forgery from either the pair of stereo
images using FDL-Net model. The segmentation mask (white:
foreground or attacked area, black: background or non-forged
area) obtained from FDL-Net for the forged area in RGB is
forwarded to the Forged area Extraction module where the
bounding box of the mask is extracted and the center of
the bounding box is computed. Mapping of the estimated
four bounding box coordinates in RGB to eight bounding
box points in point cloud directly is challenging owing to
sparsity and collisions. The sparse nature makes it difficult
to represent the semantic structure of the entire object or
scene proportionally with distance from the camera. It also
requires roll, pitch, yaw angle beyond camera matrices for
object orientation and pose estimation that is not estimated by
object detection algorithms. To reduce computation, keeping
the immediate goal and utility of localization in mind, we
propose to compute the center of the bounding box extracted
from the segmentation mask output of FDL-Net. The center
coordinate is mapped to point cloud using the 3D LiDAR
data and camera calibration parameters as shown in Figure
1. The center point acts as a representation of the forged area
in stereo images and LiDAR from which we estimate a region
of forgery. A pair of calibrated stereo cameras are used to
compute the disparity, followed by depth estimation. Depth
estimation is done by Triangulation following the principles
of epipolar constraints and z = f.b

d , where z represents depth,
f stands for focal length of the camera, b is baseline and
d is disparity. The disparity is calculated as d = XL − XR

where L and R subscripts represent left and right stereo images
respectively. The mapped point (X), is obtained by operation
of the depth image on camera matrix as shown in Equation 8:

X = Pimage to rect ∗Rrect to cam ∗(R|T )cam to velo ∗Y (8)

This operation converts the coordinates of points from
stereo camera image plane to point cloud sensor plane. The
parameters in matrix Rrect−to−cam is used to change to
camera coordinate system and Pimage−to−rect to rectify the
coordinates from image plane. R and T are the rotational
and translation matrices for changing coordinate system from
camera to point cloud sensor. Note that in ALERT[12] they
operate on the entire image while we are using the same idea
only on the points of interest, represented in Equation 8 as Y.

To localize the region of interest in the point cloud, we
run a 3D K-Nearest neighbours search. The forged area in the
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TABLE I
MODEL PERFORMANCE WITH DIFFERENT BACKBONES. ALL VALUES ARE REPORTED AS AN AVERAGE OVER THE TEST CASES IN CORRESPONDING

CATEGORY (EASY, MEDIUM OR HARD).

Choices of Backbones No. of Parameters Easy Medium Hard
IoU-Score F1-Score IoU-Score F1-Score IoU-Score F1-Score

MobileNetV2 ∼8 millions 0.9423 0.9645 0.8873 0.9256 0.48210 0.53491
EfficientNetB0 ∼10 millions 0.9499 0.9708 0.9063 0.9345 0.5721 0.6406
EfficientNetB3 ∼17 millions 0.9603 0.9749 0.9371 0.9514 0.699 0.7649
EfficientNetB4 ∼25 millions 0.9773 0.9890 0.9324 0.9689 0.73451 0.79104

Fig. 3. FDL-Net Architecture: FDL-Net is a U-Net style network consists of
two paths, contracting (or encoder) and expansive (or decoder). EfficientNetB4
is the backbone selected in encoder path. The main block used in this
backbone is mobile inverted bottleneck, denoted by MBConv, along with
squeeze-and-excitation optimizer. Each step in encoder path includes a number
of MBConv blocks that shown before symbol ’@’. Each Conv2D block
consists of a conv2D layer followed by batch normalization and activation
layers. In expansive path, there are couple of up-sampling steps each followed
by a decoder block, each has two stages. Each stage includes a conv2D
layer, followed by batch normalization and activation layers. The output of
up-sampling step in expansive path, is concatenated with the corresponding
feature map from the contracting path.

point cloud is approximated by finding the nearest points to the
mapped center approximating the forged area. The mapping
works for attacks with distinct segmentation mask to compute
the center for mapping. In cases where the neural network
fails to localize forgery, the mapping fails due to lack of
distinct region. Sparsity of object and occlusions also impact
the mapping. In hard cases representing farther objects, the
sparsity is very high leading to loss of structure causing the
mapping to fail. The hyperparameter K depends on the object
and category of attack. We empirically average K to 300 for
Easy, 200 for Medium and 100 for Hard cases on commonly
forged objects such as pedestrians, cyclists, vehicles, and road
signs covering the region of interest i.e., the immediate front
of the forged object facing the concerned autonomous system.

VI. EXPERIMENTS AND PERFORMANCE

In this section, we summarize the performance of the FDL-
Net model based on the evaluation metrics described in Section
V-A. We also visualize the segmentation results on test cases
by our trained FDL-Net model and mapping to 3D point cloud
data. To demonstrate the superiority of the FDL-Net, we also
train it with two benchmark datasets CASIA V1.0 and V2.0
and compare our model’s performance with other state-of-the-
art approaches.

All the training procedures are conducted on Ubuntu 18.04.1
using GPU GeForce GTX 1080 with 8 GB Memory and with
CPU of Intel Core i7, 16 GB memory.

A. FDL-Net Training
We implemented FDL-Net using a Python library called

Segmentation Models [36] based on Keras [37] and Tensor-
Flow [38]. To initialize the weights, we use the pre-trained
weights on 2012 ILSVRC ImageNet dataset [28] for each
backbone. Our generated dataset is randomly divided with
the ratio of 7:2:1 for training, validation and testing sets
respectively. The input data (2D images and their ground truth
masks) are normalized before training or evaluation phase.
We also apply the transformations such as horizontal flip,
Gaussian noise, brightness, contrast, and colors manipulations
to augment the data on the fly. We used Adam as optimizer
with learning rate initially set to 0.0001 and reduce it by factor
of 0.1 once learning stagnates. The batch size is equal to 8
during training and validating.

We train FDL-Net for 80 epochs that is where our model
training converges. We further fine tune the decoder by freez-
ing the encoder layers. This fine tuning phase uses the well
extracted features and starts updating the weights during the
decoder re-training. Such a fine tuning helps to improve the
prediction of segmented mask for Hard attacks and increases
the model performance by 3.93% for Intersection over Union
score and 3.16% for F-1 score.

TABLE II
MODEL PERFORMANCE ON CASIA V2.0 AND CASIA V1.0. ALL VALUES

ARE REPORTED AS AN AVERAGE OVER THE TEST CASES.

CASIA V2.0 CASIA V1.0
Test set 1 Test set 2 Test

IoU-Score F1-Score IoU-Score F1-Score IoU-Score F1-Score
0.823 0.871 0.812 0.859 0.598 0.641

B. Time Performance
As we discussed earlier, having a model with lower in-

ference time to predict and segment the data is crucial in
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TABLE III
F1 SCORE COMPARISON ON TWO DATASETS, CASIA V1.0 AND CASIA

V2.0. ALL VALUES ARE REPORTED AS AN AVERAGE OVER THE TEST
CASES. ’-’ DENOTES THAT THE RESULT IS NOT AVAILABLE IN THE

LITERATURE.

Methods CASIA V1.0 CASIA V2.0
RGB-N [25] 0.408 -

Edge-enhanced MFCN [23] 0.541 -
Patched-based method [39] - 0.5634

U-Net [8] - 0.749
RRU-Net [40] - 0.841

FDL-Net (ours) 0.641 0.859

autonomous driving domain. FDL-Net model takes time of 66
milliseconds in average to detect and localize forged area in 2D
RGB image. With more computation power, the time taken for
forgery detection and localization decreases. Also localization
of forgery in 3D point cloud data takes time around 230
milliseconds in average, run on MATLAB using a system with
CPU of Intel Core i7, 3.30 GHz and 24.0 GB RAM. The time
needed to localize forgery in 3D point cloud is higher due
to matrix computations for point cloud data with dimensions
over 23790 × 4 followed by a K-NN search over all points.
Therefore, it’s highly depends on the number of points in 3D
data.

C. Model Comparison On CASIA Dataset

To demonstrate the superiority of the FDL-Net, we also
train it with two benchmark datasets CASIA V2.0 that contains
sufficient number of manipulated images (5123 tampered RGB
images in the format of TIFF and JPEG), and CASIA V1.0
that contains 912 tampered images with size of 384x256, in
the format of JPEG. Since their corresponding segmentation
masks are not available, they are constructed based on the
difference between tampered and original images. To train the
FDL-Net on CASIA V2.0, We select those images with size of
384x256, then randomly divided into the train and validation
sets (denoted as Test set 1 in Table II) and the rest of the
images is considered as a test set (denoted as Test set 2 in
Table II for evaluation purpose). The main reason for such a
division is that since the CASIA V2.0 contains very elaborated
fine-grained forgery with smoothed tampered contours, any
pre-processing such as resizing or re-scaling can remove the
forgery footprint and results in a model with poor performance.
In evaluation phase, we apply window sliding with size of
384x256 over the test image to scan the entire of it and find
the forged area if exists. The similarity of the reported results
shown in Table II guarantees that such a train/val/test division
works for this challenging dataset.

Table II also shows the performance of the model obtained
by training on CASIA V1.0 based on the metrics of IoU
and F1 scores. Furthermore, Table III summarizes the other
models’ performance in comparison with our approach that
obtains promising results in comparison with other state-of-
the-art approaches.

D. Visualization on Test Cases

(i) CASIA V2.0 Test Cases: First, we demonstrate the
performance of the model, trained on CASIA V2.0 on multiple

Fig. 4. Qualitative results for splicing and copy-move forgery localization on
CASIA V2.0 Dataset. a) RGB manipulated images, b) generated segmentation
masks by FDL-Net, and c) ground truth masks.

test cases that contain forged area in different sizes. FDL-Net
can detect and localize the segmentation masks for unseen and
fine-grained test data containing splicing forgery, the first four
test cases as shown in Figure 4 and copy-move forgery (the
last two test cases). In the latter type of forgery, the added
object, selected from the same image, is re-scaled or rotated
and placed into the scene.

(ii) Forged KITTI Test Cases: To evaluate our model for
forgery localization on 2D and 3D data, we visualize the
segmentation results in 2D RGB image and 3D point cloud
data on Easy type attacked test case as shown in Figure 5. The
image in leftmost side shows a pedestrian as a forged object
in front of the autonomous vehicle, the rightmost side image
displays the ground truth mask and middle one is the generated
mask by FDL-Net model. It’s worth noting that all the ground
truth masks are displayed after applying binerization step so
the forged region has sharp edges. Figure 6 shows the mapping
result of 2D forgery localization to 3D point cloud data by the
approach explained in Section V-C.

Figure 7 (Appendix A) depicts a category of Medium attack,
in which the area containing a car, driving in left lane is the
region under attack. FDL-Net model generates the segmenta-
tion mask, shown in middle image. In Figure 8 (Appendix A),
we notice that the object semantics is lost to a great extent and
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Fig. 5. 2D forgery localization for Easy category by FDL-Net model. a) Attacked RGB image, b) generated segmentation mask, c) binary ground truth
segmentation mask.

Fig. 6. 3D forgery localization of area under attack displayed in Figure
5. The LiDAR data is cropped to demonstrate the forged region clearly. In
LiDAR data, the sensors installed on autonomous vehicles collect information
in 360 degrees and compute the depth accordingly. To understand the LiDAR
data, you can imagine the autonomous vehicle in the center of dark circle and
the pedestrian (the forged area indicated in red) is walking in front of the car.

only a vague outline is visible owing to increase in sparsity
with distance from the LiDAR imaging source. The K-NN still
localizes the area of the forgery successfully which is not the
case for Hard attack as shown in Figure 10 (Appendix A).
The attack in 2D image, shown in Figure 9 (Appendix A) is
accurately detected by FDL-Net and we can map the center
of the forged area to 3D in a close range but K-NN fails due
to sparse nature of the far away object.

We also observe that FDL-Net model is not able to detect
and localize forged area in some test cases. For instance,
Figure 11 (Appendix A) shows an attacked scenario belongs
to Hard attack category, that FDL-Net model is not able to
localize the area under attack due to the small forged area.
Since it’s too far from the autonomous vehicle the level of
immediate risk associated with it is less.

VII. CONCLUSION

The need to detect and localize forgery such as multimedia
data of different modalities in high risk domains autonomous
vehicles has of recent motivated research for the same. In
this work, we propose a Vision Based Measurement approach
by introducing FDL-Net to not only detect but also localize
forgery in multimedia data namely 2D RGB and 3D Point
cloud in near real time of 66 milliseconds and around 200

milliseconds respectively. The newer architecture allows FDL-
Net to perform better not only in Easy, Medium categories
but also on Hard category attacks that are difficult even for
naked eye. The segmented forged area as detected by FDL-
Net is then mapped and localized to 3D point cloud. Despite
studies being in a nascent stage on the later, we are able to
accurately localize the area of attack in 3D accurately for Easy
and Medium categories. In case of some Hard attacks, our
approach misses the detection and hence, the localization of
forged area. The reason is the very few number of forged
pixels in such attacks. In future, we will explore techniques
to address such Hard cases to be detected.
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APPENDIX A
RESULTS FOR MEDIUM AND HARD ATTACKS ON KITTI DATA SET

Fig. 7. 2D forgery localization for Medium category by FDL-Net model. a) Attacked RGB image, b) generated segmentation mask, The model detects and
localizes the additive car into the scene very accurately, c) binary ground truth segmentation mask.

Fig. 8. 3D forgery localization of area under attack (in red) displayed in Figure 7

Fig. 9. 2D forgery localization for Hard category by FDL-Net model. a) Attacked RGB image, b) generated segmentation mask, c) ground truth segmentation
mask.

Fig. 10. 3D forgery localization of area under attack displayed in Figure 9. Although it can find the center point of attacked area properly K-NN fails to
localize the forged area in this case.
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Fig. 11. The failed test case of 2D forgery localization for Hard category. The forged area is a car located at the end of the road, indicated by a yellow
bounding box. If the autonomous vehicle approaches to the additive object in next frames during the streaming the model can detect it as a forgery and set
an alarm for proper reaction.


