FRUGAL: Provisioning of Fog Services over 5G
Slices To Meet QoS with Minimal Cost

Ashkan Yousefpour, Jason P. Jue
The University of Texas at Dallas
Email: {ashkan, jjue}@utdallas.edu

Abstract—Recent advances in the areas of Internet of Things
(IoT), cloud computing and big data have been attributed to the
rise of a growing number of complex and useful applications. On
the other hand, The fifth generation (5G) wireless technology is
envisioned to provide faster Internet access, with lower latency,
and ubiquitous mobile coverage compared to its predecessors.
As IoT becomes more prevalent in our daily life, more data-
intensive, delay-sensitive, and real-time applications are expected
to emerge. Ensuring Quality of Service (QoS) in terms of
bandwidth and low-latency for these applications is essential in
5G, and fog computing is seen as one of the primary enablers
for satisfying these QoS requirements. Fog puts compute, storage,
and networking resources closer to the user.

In this report, we show the system model of FRUGAL, a
framework for QoS-aware Fog-supported 5G Slice Provisioning
(QFSP). QFSP concerns the dynamic deployment or release of
application services over a 5G slice on fog nodes, or dimensioning
(enlarge or shrink) of a fog-supported 5G slice, in order to meet
the latency and QoS constraints of applications while minimizing
cost.

I. SYSTEM MODEL

In this paper we study the QFSP problem, which is to
dimension (enlarge or shrink) a fog-supported 5G slice to com-
ply with the latency (i.e. QoS) constraints of the application
while also minimizing the cost of the slice resources. The
Slice Owner (SO) wishes to run (possibly latency-sensitive)
application(s) over her slice. The SO solves an instance of
the QFSP problem to find a “good” solution for utilizing
her 5G slice; the SO wishes to comply with the latency
constraints of her application and wishes to do so with minimal
resource cost. A slice can be shrunk to free up extra resources,
which may save costs, or may be enlarged if needed, to
serve the rising demands, which may reduce the violation
costs. Moreover, within a slice, application components (i.e.
services) may be dimensioned or placed in different locations
to comply with the latency constraints and/or to minimize the
cost.

A 5G slice is define as networking, compute, storage, and
memory resources reserved to serve one or more applications
in the 5G networks. Networking resources are modeled in
terms of reserved bandwidth between two physical nodes,
whereas compute, storage, and memory are modeled in terms
of reserved resources within a physical node. A slice can be
comprised of several applications that span across fog, cloud,
and edge networks.

An IoT application may be composed of several services
that are essentially the components of the application and can

run in different locations. Such services are normally imple-
mented as containers, virtual machines (VMs), or unikernels.
For instance, an application may have services such as authen-
tication, firewall, caching, and encryption. Some application
services are delay-sensitive and have tight delay thresholds,
and may need to run closer to the users/data sources (e.g.
caching), for instance at the edge of the network or on
fog computing devices. On the other hand, some application
services are delay-tolerant and may have high availability
requirements, and may be deployed farther from the users/data
sources along the fog-to-cloud continuum or in the cloud (e.g.
authentication). We label these fog-capable IoT services that
could run on the fog computing devices or the cloud servers
as fog services.

To formulate the QFSP problem, we introduce some no-
tation. Let a set of (telecom) edge nodes be denoted by
F, a set of cloud servers by C, and a set of fog services
running over the SO’s slice by A. Some services comprise the
components of a complex [oT application that will eventually
be run over a 5G slice. Some edge nodes have fog computing
capabilities (e.g. compute, storage, memory), while some edge
nodes solely act as the access points in the edge network
and are the entry points of the incoming IoT traffic to the
telecom network. Let f(j) = 1, if edge node j € F' have fog
computing capability (hence called a fog node), and f(j) = 0,
otherwise.

Let the desired QoS level for service a be denoted by g, €
(0,1), and delay threshold for service a by th,. Let p, denote
the penalty that the SO experiences if latency requirements of
service @ are violated by 1% per unit time, and let Va% be the
percentage of IoT service delay samples of service a that do
not meet the delay requirement. For instance if g, = 97%, any
violation percentage V,/* greater than 3% must be compensated
for by the SO.

The underlying communication network, set of edge nodes
and cloud servers are modeled as a graph G = (V, E), such
that the node set V includes the edge nodes F' and cloud
servers C' (V = F U C), and the graph edge set E includes
the logical links between the nodes in V. Each graph edge
e(src,dst) € E is associated with two numbers: r., the
transmission rate of logical link e (megabits per second); and
d., the propagation delay of logical link e (milliseconds). For
the sake of correct indexing, if e(src,dst) is the logical link
between an edge node and a cloud server, we rename r. and
d. to 7/, and d., respectively. These parameters are maintained

by the Physical Infrastructure Provider (PIP) and are shared
with the SO.

The main decision variables of the QFSP problem are the
resource allocation variables, defined in the table 1.
A. Optimization Problem

The QFSP problem can be formulated as the following
minimization of Cost(¢) over all time intervals (starting from
t=0tot=T°"):

P1: min) Cost(t),

OStSTe“d
Cost(t) = [CE™(t) + CF™(t)]+ (1
[Ostor()+ Cstor(t)] [Cmem()+ Cmem()]
[Cnet ()+Cnet ()] + Cv1ol()’

Subject to QoS constraints.

The cost components are defined below.

Cvproc Z X Tt,)
keC
CRe(t) = >_ XTI, 3)
JEF
CSCEOY(t> = Z + Z)\/m Tt, (4)
keC acA
Ci(t) = 2 (X707 + 3 A CT, 5)
JEF acA
mem Z X/ILI /IMTt (6)
keC
CF™() = 3 X' O, ™
jeF
Cre Z Z Tha () WGiha () T 3
jEF acA
CEp(t) =Y > YipugnTe, ©)
JEF j'eF
Cwol Z Z V% o 1 o qa)rr)\mjpa (10)
jEF acA

The notation [.]* in the definition of CV! is defined as
[z]T = max(z,0).

C;® and CJR are the unit cost of request in cloud server k
and fog node j, respectively (e.g. per 1000 requests).

C2% and CR™ are cost of processing in cloud and fog,
C‘“’r and C5°" are cost of storage in cloud and fog, and CE*™
and Cpe™ are cost of memory in cloud and fog, respectively.
The cost of processing is defined similar to the pricing of
compute instances in Amazon EC2 [1] and the cost of storage
is defined similar to the pricing of storage instances in Amazon
S3, which is the storage cost plus the request cost (GET,
POST, etc.) [2]. C7A™ is the cost of communication between
fog and cloud, Ccomm is the cost of communication between
fog nodes, and CV“’l is the cost (penalty) of delay violations.
A service deployed on a fog node may be released when
the demand for the service is small. Therefore, we assume

the services are stateless, that is they do not store any state
information on fog nodes [3], [4], and we do not consider
costs for state migrations. We consider a discrete-time system
model where time is divided into time periods called re-
configuration periods. T is the time interval between two
instances of solving the optimization problem.

B. Constraints

The constraints of the optimization problem are introduced
here.

1) Maximum Allowed Slice Capacity: The PIP exerts a
maximum allowed slice capacity (MASC) for a given slice. In
other words, the SO cannot allocate to her slice more resources
than the maximum allowed slice capacity imposed by the PIP.
Let the MASC for compute, storage, and memory at fog node
jbe K, K9, KM, and at cloud server k be K;”, K%, K;M,
respectively. Also, let the MASC for networking (bandwidth)
between fog node j and fog node j be K %, and between
fog node j and cloud server k be K]’],X . First, we express the
MASC constraints for the nodes in the SO’s slice:

X <Kl vjeF; XiF <K, vkec; (11)
X7 <K7, VjeF; X;° <K;®, VkeC; (12)
XM < KM vjeF; X;M M vk e C. (13)

Note that in certain scenarios the MASC for cloud servers
may be a very large value, and thus we can relax those
constraints in such scenarios. Similar to the MASC constraints
for the nodes, MASC constraints for the links in the SO’s slice
are

Yo < Kjy,

v(j.j') € E, (14)

Kk’

; V(j, k) € E.

(15)

2) Traffic Offloading: We aim to define the QoS-aware
Fog-supported 5G Slice Provisioning (QFSP) problem gen-
eral enough and agnostic to the underlying traffic offloading
scheme such that different offloading frameworks can be used.
The simplest offloading scheme of fog nodes is no-offload.
In the no-offload framework, when a request arrives to the
fog node, the fog node will process it if its queue is not
full, or drops the request if the queue is full. It can be seen
that no-offload is not a good traffic offloading policy, since
requests may be blocked or overloaded fog nodes may have
to process more requests which will result in high latency.
Another simple offloading policy is cloud-only-offload, where
offloading happens only from a fog node to the cloud. Another
offloading policy is single-neighbor-multi-offload, when a fog
node can offload traffic to one of its neighbors (e.g. the one
with the smallest waiting time, as in our prior work [5]) and
offloading can happen multiple times among the fog nodes
until it reaches the max-offload-limit and is hence offloaded to
the cloud. One can envisage many such offloading policies.

In this subsection we select one such offloading policy
to show how an arbitrary offloading scheme can fit in our

TABLE I
VARIABLES OF QFSP PROBLEM

Service Variables
Computing resources allocated to service a over the

P
To; 20 SO’s slice on fog node j (in MIPS)
g Storage allocated to service a over the SO’s slice on
zg; 20 fog node j (in megabits)
M Memory allocated to service a over the SO’s slice on
To5 20 fog node j (in megabits)
P Computing resources allocated to service a over the
Top 20 SO’s slice on cloud server k (in MIPS)
'S Storage allocated to service a over the SO’s slice on
Ty 20 cloud server k£ (in megabits)
s Memory allocated to service a over the SO’s slice on
Ty 20 cloud server k (in megabits)
Traffic Variables
Fraction of traffic for service a offloaded from fog
0<taj;» <1 jode 7 to fog node j’
Fraction of traffic for service a offloaded from fog
o<t ., <1

ajk = node j to cloud server k
Slice Node Variables
Computing resources allocated to the SO’s slice on

P
X5 =20 fog node j (in MIPS)

g Storage allocated to the SO’s slice on fog node j (in
X2 >0 bi

J megabits)
XM > g Memory‘ allocated to the SO’s slice on fog node j (in

i = megabits)

Computing resources allocated the SO’s slice on

XP >0

E = cloud server k (in MIPS)
Storage allocated to the SO’s slice on cloud server k

S
Xllc 20 (in megabits)
M Memory allocated to the SO’s slice on cloud server k
X' 20 (in megabits)
Slice Link Variables
Networking resources (bandwidth) allocated to the
Y, >0 (logical) link between edge node j and edge node j’
in the SO’s slice (in megabits per second)
Networking resources (bandwidth) allocated to the
Yj’lC >0 (logical) link between edge node j and cloud server

k in the SO’s slice (in megabits per second)

framework. We choose and describe the multi-neighbor-single-
offload, where the traffic from a fog node can be offloaded to
all of the fog node’s fog neighbors and also to the cloud.
In multi-neighbor-single-offload an offloaded traffic to a fog
node cannot be offloaded again and must be processed by the
receiving node.

Let I,; denote the incoming IoT traffic for service a over
the SO’s slice at fog node j, and let \,;/; denote the offloaded
traffic for service a from fog node j’ to fog node j over the
SO’s slice. Then the total incoming traffic of fog node j for
service a over the SO’s slice, v,;, will be

Vaj = Taj+ D Aagis-
j'er

(16)

Note that in multi-neighbor-single-offload an offloaded traffic
to a fog node cannot be offloaded again; nonetheless, not all of
I,; is “accepted” by fog node j for processing. Let us define
taj;o as the fraction of traffic for service a that is offloaded
from fog node j to fog node j' (when j' = j, t,;; indicates

the fraction of accepted traffic by fog node 7). Similarly, tilj k

is the fraction of traffic for service a that is offloaded from
fog node j to cloud server k. Obviously, these fractions should
add up to one for a given service a at a given fog node j, or

tin) T O tajir =1, Va€ ANj€eF.
JEF

A7)

The accepted incoming traffic to fog node j for service a over
the SO’s slice is

in
Moy = tags X Laj+ D Aajrj-
J'eF

(18)

The fraction of I,; that is not accepted by the fog node will be
offloaded either to another fog node, or to a cloud server. The
dispatched traffic from fog node j to cloud server k = h,(j)
for service a over the SO’s slice is denoted by X(’l‘;t and is
derived by

Aoj = t;jhu(j) X 1. (19)

The incoming traffic to cloud server k for service a over the
SO’s slice is

fin __ 7/ out
ak — Iak + Z aj>’
JEH (k)

(20)

where H, (k) set of indices of all fog nodes that route the
traffic for service a to cloud server k, and [;k is the incoming
IoT traffic for service a over the SO’s slice at cloud server k.

Similar to Eq. (18) and Eq. (19), the offloaded traffic from
fog node j to fog node j’ for service a over the SO’s slice is

/\ajj’ = tajj/ X Iaj. (21)

3) Fog Computing Capability: If edge node j does not have
fog computing capabilities, it should not accept any traffic for
processing and it should offload all of the incoming traffic
either to a fog node or a cloud server; that is, if f(j) = 0,
then t,;; = 0. Similarly, if edge node j does not have fog
computing capabilities, other edge nodes j' € F' should not
offload any traffic to this node; that is, if f(j) = 0, then
tajr; = 0. These two constraints can be linearly described by

tagry < f(9), (22)

4) Service Delay: 10T service delay is defined as the time
interval between the moment when an IoT node sends a service
request and when it receives the response for that request.
(The closed-form equation of IoT service delay is explained
in our prior study [6]). To obtain the service delay, we need to
have the average propagation delay and average transmission
rate between IoT nodes and their corresponding fog nodes.
These values must be known by the SO, and in some cases can
be approximated by round-trip delay measurement techniques.
However, since obtaining these values are not always feasible,
we change the scope of the definition of the IoT service delay
to consider the delay only within fog to cloud domains.

IoT service delay captures the delay from the moment
an IoT node sends a request until it receives the response
for that request. This can be changed to capture the delay

Va € A, V4,5 € F.

from the moment the request reaches a fog node. This new
service delay, d,;, can be realized as the average delay budget
for service a at fog node j within fog-cloud. The average
delay budget for the multi-neighbor-single-offload scheme for
service a at fog node j is equal to

Ira 4 [P
daj = Waj X tajj + D [2d(g0y + 5 + Wayr] X tajyy
j'eF JJ
ARSI .
+[2d{; 1) + Yi’k +wg] Xt k= ha(5)(23)
J

Similarly, the average delay budget for the single-neighbor-
single-offload scheme for service a at fog node j is equal to
Ira 4 P

daj = Wqj X tajj Y. + waj*] X tajj*
Jjrx

+ [2dj) +

l“l + P
4wl] Xt

ij A ak] ajk

where j* is the best neighbor of fog node j. The vari-
ables tq;j, tajjrs tajks Yjjr» and Yj) are calculated by the
QFSP problem. In order to evaluate the delay budget, we need
to have the average size of requests and reply of service a
(179 and []P) and the propagation delay between fog nodes
and from fog nodes to cloud servers (d; ;) and d’(J. k)), which
are known or measured by the SO. We also need the average
waiting times (queueing time plus processing time), wqj, Wqj/,
and w/, ., which can be obtained either from the corresponding
M/M/c queueing models of the fog nodes and the cloud
servers (discussed in Section I-B8), or based on predictive
performance modeling and black-box monitoring techniques
[7]. In either case, the incoming traffic to fog nodes is required
to obtain the average waiting times. The incoming traffic to
the fog nodes (/,;) can either be directly monitored by the SO
(e.g. using the monitoring agent of an SDN controller [6]) or
can be predicted by the SO using a learning approach (to be
discussed in Section II).

In the first approach where I,; is monitored (at the be-
ginning of each configuration interval), the QFSP problem
is solved in a reactive nature; whereas the second approach
that predicts I,; is proactive, since it provisions the resources
ahead of time based on the estimated incoming IoT traffic.
Moreover, the predicting approach has the advantage of getting
an average of I,; during a configuration interval, as apposed
to the monitoring approach that only obtains an instance of
1,; during a configuration interval.

In the Section II we discuss how employ learning methods
to predict I,; and obtain the waiting times of the fog nodes
and cloud servers.

5) SLA Violation: To measure the quality of a given service
a, we need to see what percentage of IoT requests do not
meet the delay threshold th, (SLA violations). We first need
to check if average delay budget of fog node j for service a
is greater than the threshold th, defined in SLA for service
a. Let us define a binary variable v,; to indicate this:

+ [2df;) k= ha(j)(24)

if da]‘ > th,

. , Vj € F,VaceA.
otherwise

(25)

We define another variable that measures the SLA violation
(SLAV) of a given service according to the defined QoS
parameters in the SLA. We denote by Va% the percentage of
IoT service delay samples of service a that do not meet the
delay requirement. V. can be calculated as follows

V% Z)\(lj Vaj
a Z)\III)

Note that Va% is measured as a weighted average of v,;, with
)\i;j as the weight.

6) 5G Slice Resource Capacity: The amount of the re-
sources allocated to the services and traffic within the SO’s
slice should not exceed the capacity of the slice; this applies
to all the nodes and the links of the slice.

We first look at this constraints with respect to the nodes in
the slice, i.e. compute, storage, and memory resources within
a node of the slice:

Ya € A. (26)

ng’j<xf7 Vj e F; Zx <XF, VYkecC; 27)

acA acA
Soaf < X5, vjeR; S ali <X, kel 28
acA acA
SaM < xM vier; S ol < XM VkeC. (29
acA a€A

Similarly, we also have constraints for capacity of the links in
a slice: the amount of traffic routed over a particular slice link
should not exceed the amount of allocated bandwidth to that
slice link, which is expressed by

Z Aajrj (g +167) < Y,
a€A

V(") € E, (30)

DO+ 1P) <Yy, V(i k) € E. (31)

a€A

7) Arrival of Requests: Let A,; denote the arrival rate
of instructions (in MIPS) to fog node j for service a over
the SO’s slice. This is the arrival rate of instructions of the
incoming requests that are accepted for processing by fog node
j that is given by A,; = LEAL;. Similarly, the arrival rate of
instructions (in MIPS) to the cloud server k for service a over
slice the SO’s slice, A/, can be written as A/, = Lf;)\g’}c,
where A is the incoming traffic rate to cloud server k for
service a over the SO’s slice. L is the required amount of
processing for service a per request.

The amount of computing resources allocated to the fog
nodes and cloud servers for a given service on the SO’s slice
must be bigger than the incoming arrival of processing requests
for that service (i.e. stability constraints):

xhy > Noj, Vj € F\Va€ A, (32)

> A, Vke€ C\Vae A. (33)

8) Waiting Times: To get the waiting times, We adopt a
commonly used M/M/c queueing system [8], [9], [10] model
for a fog node with n; processing units, each with service
rate y; and total arrival rate of), Ag; (total processing
capacity of fog node j will be KJP = njl;).

To model what fraction of processing units each service
can obtain, we assume that the processing units of a fog
node are allocated to the deployed services proportional to
their processing needs (L2"). For instance, if the requests for
service a; need twice the amount of processing than that
of the requests for service ag (LY =2 x LL), service ay
should receive twice the service rate compared to service as.
Correspondingly, we define f,;, the fraction of service rate
that service a obtains at fog node j as:

P
‘rajLa
TP
ZaEA anLa

Each deployed service can be seen as an M/M/c queueing
system with service rate of fu; X KI = fa;n;u;, and arrival
rate of A,; (both in MIPS). Thus, the waiting time for requests
of service a at fog node j will be

faj = (34)

IR
faj:uj fajKjP_Aaj’

(35)

waj

where PL% is the probability that an arriving request to fog
node j for service a has to wait in the queue. P@ is also
referred to as Erlang’s C formula and is equal to

nape)s Pl
P9 = (0 J') —, (36)
nj. — paj
such that p,; = 7 ‘}ép and
aj s
S (300g)° | (mipag)™ 1
NjPa 15 Paj -

PO _[jPaj jPaj 37
v ; a7 njl 1= pa; o0

Note that the requests for different services have different
processing times. Nevertheless, as discussed before, in the
definition of A,; we account for the different processing times
by the inclusion of L.

Similarly, cloud server k with nj processing units (i.e.
servers), each with service rate p) and total arrival rate of
> aca Ay, can be seen as an M/M/c queueing system (total
processing capacity of cloud server k will be KiF' = n} x u}).
Therefore, similar to Eq. (35), w;k, the waiting time for
requests of service a at cloud server k, could be derived as

1 PY
wh, = + ak , Ya € A,Vk € C. (38)
g Tart fszfep — A

An equation similar to Eq. (36) is defined for 77(;%, the
probability of queueing at cloud server k. Note that for
simplicity, instead of modeling each cloud server a M/M/c
queue, one may also model the whole cloud as an M/M/oo
queueing system.

9) Dependency of Compute, Storage, and Memory: The
variables for compute, storage, and memory allocation are
interrelated to each other; when there is no compute resources
allocated to a node for a particular service, there is no need to
allocate corresponding storage and memory resources to the
node for that service. These dependencies for fog nodes can
be formulated using the following constraints:

0 if 2. =0
S _ ’ aj .
xo. = , Vj € F,Va€ A, 39
“ {Las , otherwise J %9
0 if P =0
M __ ’ aj .
T, = , , VjeF,VacA, 40
“ {sz” , otherwise I 0
and for cloud servers using the following constraints:
0 if 2/ =0
5 =1 ak , VkeCVae A, 41
ak {Lf , otherwise “h)
, 0 if 2/F =0
e =37 DT TR ypeCVae A @2
L;", otherwise

L2 and LM are the required minimum amount of storage and
memory for service a, respectively. It is worth mentioning that
since cloud is usually regarded as having ample resources, the
constraints (41) and (42) could be easily modified to allocate
more storage and memory resources for cloud servers when
/P
o > 0.
II. LEARNING METHOD FOR INCOMING IOT TRAFFIC

A. Predicting Incoming IoT Traffic

To predict the incoming traffic to Iot nodes, we employ the
follow the regularized leader (FTRL) online learning method
[11]. Our method for traffic prediction is mainly influenced by
the demand prediction method discussed in [12].

To account for the amount of incoming traffic in different
configuration intervals, we add time variable ¢ to the variable
I,;, make it I,;(t), the predicted incoming IoT traffic for
service a over the SO’s slice at fog node j in the configuration
interval ¢. Let I ;j(t) be the actual (e.g. measured) incoming
IoT traffic for service a over the SO’s slice at fog node j in
time t. Let us define I3 = max;e(o,7en)(Lq;(t)), Which is
known to or can be measured by the SO based on historical
observations. Hence, the predicted incoming traffic I,; (t) will
be in [0, I7%*]. We can then divide the time into configuration
intervals so that we have countable number of I,;(t)’s. We
define a convex loss function to minimize the prediction error
for the incoming IoT traffic I,;(t) as

Ei(Lj) = Ly (t) — I5;(1)], Vj € F\Va € A,vt,

Therefore, a loss minimization problem over all time slots then
can be expressed as

min Z Ey(1)).

OStSTC"d

(43)

(44)

The solution to this minimization problem is a set of values
for I,;(t) € [0, I™>] for every t € [0, 7°].

' Taj

FTRL chooses the predicted incoming traffic value I,;(t+1)
that minimizes the cumulative loss function over the previous
t time slots plus a regularizer (to avoid overfitting), that is

min

I,;(t+1)=ar
a]() g 1, Elo. I

t
][Z E;s (Iaj) + R(In,j)]' 45)
s=0

where 1,,; reflects the possible predicted incoming IoT traffic
rate for service a to fog node j in interval ¢t + 1. R(.) is a
convex regularizer. Since solving this optimization problem at
each reconfiguration interval is not feasible, we convert it to
the following problem

min

I:(t+1)=
a](+1) arglaje[O,Ig‘_;!X]

hi(laj), (46)
where h;(.) is the surrogate loss function that should accu-
rately estimates the original loss function and is efficient to

evaluate. We use the surrogate function chosen in [12] as

t
(o) = D (VB (Ig)] X Loj +1e(Lag). (47
s=0
VE;(Ia;) is the gradient of E(I,;) and r¢(.) is a regulariza-
tion function (similar to R(.)). The regularization function is
chosen as
t

ri(x) = 0.52 (i _ !

s=0 Qg Qs—1

)@ = a(s))?,

(48)

where a; = @(%) is e learning rate in time slot s [12].
Specifically, we will have

B

Vo (VE (L))

and since (VEs(l,;))? = 1, then oy = \/%, where [is a
hyper parameter based on the features and data (set to g =
1 g?") [12]. After this conversion, eq. (46) becomes a smooth
minimization problem with no constraints. We then simply
take the derivative of our chosen surrogate function hy(.) with
respect to I,; and set it to be equal to O to obtain the I,;(t) that
minimizes eq. (46). Taking derivative is easy and its solution
will be the predicated incoming IoT traffic.

) (49)

Qy =

B. Obtaining Waiting Times

Now having the predicted incoming IoT traffic, one can
also predicts the waiting times. As discussed before, the online
learning approach that predicts I,; is proactive in nature, since
based on predicted waiting times (and hence violation rate) the
SO provisions the resources ahead of time based. Basically,
the predicted incoming IoT traffic can be simply plugged in
the equations for waiting times to get the predicted waiting
times.

Note: We leave the investigation of other choices for sur-
rogate functions and regularization functions as our future
work. More noteworthy, one can also study the applicability
of reinforcement learning techniques for incoming IoT traffic
prediction.

III. TESTBED SETUP

For obtaining numerical evaluations and show the validity
and performance of our proposed framework, we implement
FRUGAL in the following testbed. We have 4 SDN-enabled
HPE switches in our laboratory, which we use to make a tree
topology: 1 switch as the root and 3 switches as the leaf nodes.
We directly connect one computer to each leaf switch to act
as a fog node. hence, we have 3 fog nodes in our testbed. We
also connect WiFi access points to the switches to enable the
passing traffic from the WiFi-enabled IoT devices.

The FRUGAL runs as an app (e.g. on the same computer that
has the root SDN controller) that basically communicates with
the SDN controllers through OpenFlow protocol, to monitor
the IoT traffic, deploy or release fog service, or dimension
the compute, storage or networking resources in the testbed.
The FRUGAL solves the QFSP problem and determine what
resources need to be deployed, release, or dimensioned.

The experiment will consist of 2 major components: (1)
run few IoT applications (e.g. object recognition from camera
images) whose traffic pass through these switches in our lab
to some service that is hosted in the cloud and (2) analyzing
the performance of FRUGAL with regards to service delay,
delay violations, and resource usage. The switches, access
points, and computers in our lab act as the edge of the
network, where fog nodes locate and operate. For the cloud,
we can use any cloud service provider such as AWS, Google,
or research experiment cloud computing environments such
as Chameleon Cloud or CloudLab. The cloud/fog services
could be implemented as containers or VMs. For the agile
service provisioning in the fog network, we can use Docker
containers that can be easily provisioned using kubernetes or
OpenStack. kybernetes and OpenStack gives us the flexibility
and agility for resource management (deploying, releasing or
dimensioning of compute, storage, and networking resources).

To generate IoT traffic, we have can do the following: (1)
use the IoT boards we already have in our lab (e.g. Raspberry
Pi and Arduino that have camera and other sensors) to generate
actual traffic, (2) use the Iperf tool to generate constant bit rate
traffic flows, (3) combination of both approaches: use the IoT
boards to generate actual traffic, and if needed more, use the
Iperf tool to generate more traffic (e.g. for other services or
background traffic).

REFERENCES
[1] “Amazon EC2 pricing,” 2018. [Available]
https://aws.amazon.com/ec2/pricing/.
[2] “Amazon S3 pricing,” 2018. [Available]

https://aws.amazon.com/s3/pricing/.

[3] S. H. Mortazavi, M. Salehe, C. S. Gomes, C. Phillips, and E. de Lara,
“Cloudpath: a multi-tier cloud computing framework,” in Proceedings
of the Second ACM/IEEE Symposium on Edge Computing, p. 20, ACM,
2017.

[4] R. S. Montero, E. Rojas, A. A. Carrillo, and I. M. Llorente, “Extending
the cloud to the network edge.,” IEEE Computer, vol. 50, no. 4, pp. 91—
95, 2017.

[5]1 A. Yousefpour, G. Ishigaki, R. Gour, and J. P. Jue, “On reducing IoT
service delay via fog offloading,” IEEE Internet of Things Journal,
vol. 5, no. 2, pp. 998-1010, 2018.

[6]

[7]

[8]

[9]

[10]

[11]

[12]

A. Yousefpour, A. Patil, G. Ishigaki, I. Kim, X. Wang, H. C. Cankaya,
Q. Zhang, W. Xie, and J. P. Jue, “QoS-aware dynamic fog service
provisioning,” arXiv preprint arXiv:1802.00800, 2018.

C. Witt, M. Bux, W. Gusew, and U. Leser, “Predictive performance
modeling for distributed computing using black-box monitoring and
machine learning,” arXiv preprint arXiv:1805.11877, 2018.

M. Jia, J. Cao, and W. Liang, “Optimal cloudlet placement and user
to cloudlet allocation in wireless metropolitan area networks,” IEEE
Transactions on Cloud Computing, 2015.

Z.Zhou, J. Feng, L. Tan, Y. He, and J. Gong, “An air-ground integration
approach for mobile edge computing in iot,” IEEE Communications
Magazine, vol. 56, no. 8, pp. 40—47, 2018.

L. Liu, X. Guo, Z. Chang, and T. Ristaniemi, “Joint optimization of
energy and delay for computation offloading in cloudlet-assisted mobile
cloud computing,” Wireless Networks, pp. 1-14, July 2018.

B. McMahan, “Follow-the-regularized-leader and mirror descent: Equiv-
alence theorems and 11 regularization,” in Proceedings of the Four-
teenth International Conference on Artificial Intelligence and Statistics,
pp. 525-533, 2011.

X. Fei, F. Liu, H. Xu, and H. Jin, “Adaptive vnf scaling and flow
routing with proactive demand prediction,” in IEEE INFOCOM 2018-
IEEE Conference on Computer Communications, pp. 486494, 1IEEE,
2018.

