Grace Series Talk: The Path and the Features -- Prof. I-Ling Yen

Features

➢ Big data

- Feature vector
- ♦ Label
- Association
 - Feature values leads to the label value

Eastura Vast		±
Eastura Vastor	Doto	,
Feature Vector	Data	
		-
•••	• • •	
•••	•••	
•••	•••	
Label	•••	

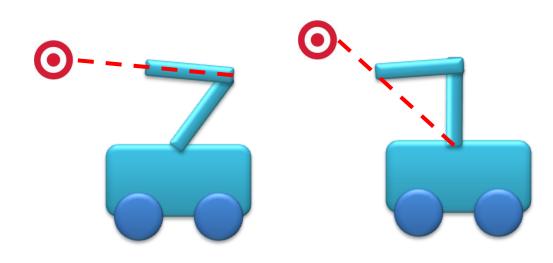
Your feature values derive your path

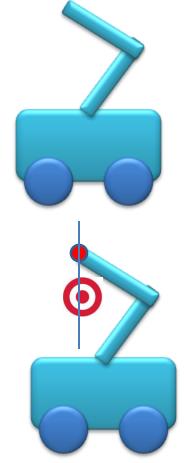
				A REAL
Feature Vector	I	Data		1000
			-	
		•••		
Label = Path			11-12	and a

Preferences and Talents

- \succ Features: Preferences + talents \Rightarrow Career path
 - Intertwined
- ➢ My academic path
 - ♦ BS: Physics, National TsingHua University, Taiwan
 - Career after graduation
 - Teacher, research assistant (repetitive tasks)
 - MS: CS, University of Houston
 - Talents/Preferences + Job market
 - Job choice: only if there is research
 - PhD: CS, University of Houston
 - Talents/Preferences + Job market + Job prospect (repetitive tasks?)
 - Assistant Prof. in Michigan State University
 - Associate and Full Prof. in UTD, since 1997

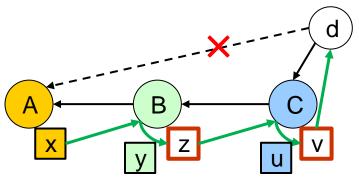
➢ Features


Problem solving


Creativity

- Dijkstra: Self stabilization, program verification, algorithms
- The framework of theory of computation, computability, decidability, NP, P, ... and the proof mechanism
- Perfectionism
 - Knuth: S in Latex
 - Steve Jobs
- Benefit society?

➢ My research Path

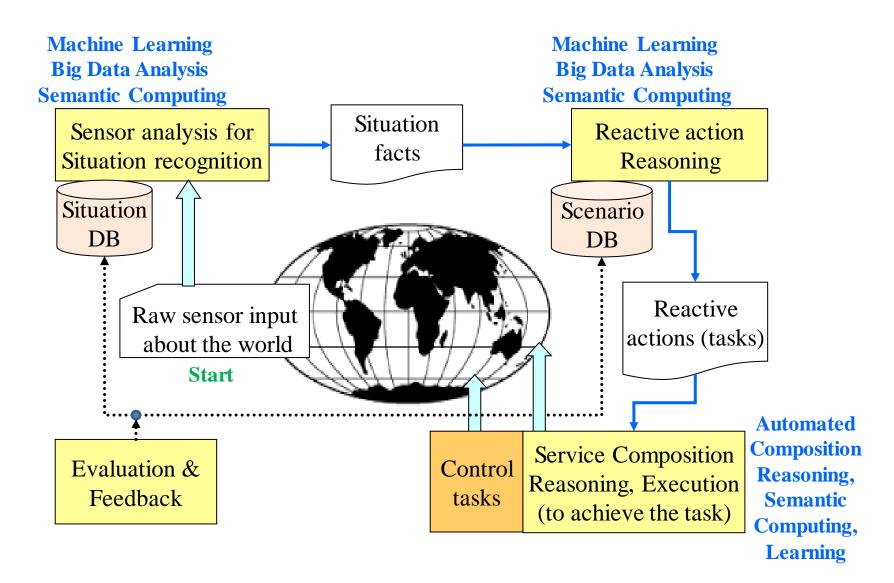

- Ionization simulation (Tsinghua)
 - For solar cell design, study the effect of deep or shallow ion implantation
- Dependability (Houston)
 - Fault tolerance, consistency, ...
 - self-organizing systems
 - Inherent fault tolerance

➢ My research path

- Security (UTD)
 - Homomorphic encryption and secret sharing
 - X + Y = Z; E(X) ?+? E(Y) = E(Z)
 - System security
 - Key management at the low level
 - Single sign on
 - Information flow control
 - Access control: within a domain
 - A: x; B: z = x+y; C: v = u*z; d: read v;
 - Who should C check with?
 - How to know that v depends on x, y, u from A, B, C?
 - How to know how much of x is in v?
 - How to define AC/IFC policies?
 - How to assure that the parties follow the AC/IFC policies?
 - How to build an efficient AC/IFC system?

≻ My research path

- Benefit the society?
- ♦ SPW
 - Rescue mission
 - E.g., search for survivors
 - Field SPW
 - E.g., automated lawn care
 - Elderly care
 - Fall prevention
 - Daily life management



SPW

\succ IoT, CPS \Rightarrow smart physical world (SPW)

- CPS involves more actuators and has complex control
 - Research focuses on the control and interactions with the PTs
- IoT research currently is more like sensor network with simple control of some actuators
 - Some research considers big data, which mainly focuses on sensor data
- The difference is fuzzy
- > SPW toward a better human life
 - Use a new terminology to avoid bias towards either
 - Desired SPW:
 - Consider sensors and actuators
 - Use AI techniques to automate various tasks in our daily lives
 - Also use HI

SPW

SPW

> Techniques for an intelligent SPW

- Scenario analysis, reaction decision making
- Knowledge-base based approaches
 - Establish rule bases for situation analysis, reaction decision making
 - Fuzzy rule base, probabilistic reasoning, etc.
- Data mining based approaches
 - Build a repository to store a large number of real world scenarios
 - For scenarios and reasoning results for situation analysis and reaction decision making
 - Mine the repository for similar cases and the associated solutions
 - Evaluate them and make a decision
- Service composition reasoning
 - Define an extended service model for PTs, PT-SOA
 - Facilitate composition reasoning based on PT-SOA

SPW Intelligence

> Techniques for an intelligent SPW

- Current AI and machine learning techniques may not be sufficient to achieve some tasks
- Human is also a precious resource in SPW
 - Use human intelligence (HI) to assist with the tasks

$\blacklozenge \Rightarrow \mathbf{AI} + \mathbf{HI}$

- Gaming based crowd sourcing
 - Many young gamers are very skillful at control tasks
 - Can we use their skills to help with real world tasks?
 - Help is provided in the gaming world (virtual), but being mapped to the real world tasks
 - Rewards are given in the gaming world for successfully accomplishing the real world tasks

AI + HI

Potential issues

- Skill
 - For some tasks, HI needs to be trained to help
 - When help with vacuuming, knock down and break precious objects
- Security
 - Someone may purposely mess up the task
 - • •
- Privacy
 - From some tasks, some private information may be released
 - •
- Liability

AI + HI

Potential issues

- Skill
 - Before assigning a real world task, get trained
 - By simulated tasks and past tasks
 - Combine AI and HI to ensure the success of the task
- Security
 - Use trust management of people
 - Associate with real world identities (identities should be protected) and use virtual and real world information to help with trust analysis
 - Mix simulated & real tasks, make them non-distinguishable
 - Use multiple human resources for fault tolerance
 - May have timeliness issues
- Privacy
 - Intelligently map real world to virtual world

AI + HI

Your feature values derive your career path and, hopefully, it benefits society

		<u> </u>
		, 📖
Feature Vector	Data	\square
		\mathbf{H}
		H
		-
Label = Path		