
Exact Upper Bound for Sorting Rn with LE

Sai Satwik Kuppili1 and Bhadrachalam Chitturi1,2

1 Dept. of Computer Science and Engineering, Amrita Vishwa Vidyapeetham,
Amritapuri, India

2 Dept. of Computer Science, University of Texas at Dallas, Texas, USA
satwik.kuppili@gmail.com, chalam@utdallas.edu

Abstract. A permutation over alphabet Σ = (1, 2, 3, . . . , n) is a se-
quence over Σ where every element occurs exactly once. Sn denotes
symmetric group defined over Σ. In = (1, 2, 3, . . . , n) ∈ Sn denotes the
Identity permutation. Rn ∈ Sn is the reverse permutation i.e. Rn =
(n, n− 1, n− 2, . . . , 2, 1). An operation has been defined in OEIS which
consists of exactly two moves: set-rotate that we call Rotate and pair-
exchange that we call Exchange. Rotate is a left rotate of all elements
(moves leftmost element to the right end) and Exchange is the pair-wise
exchange of the two leftmost elements. We call this operation as LE. The
optimum number of moves for transforming Rn into In with LE opera-
tion are known for n ≤ 10; as listed in OEIS with identity A048200. The
contributions of this article are: (a) a novel upper bound for the number
of moves required to sort Rn with LE has been derived; (b) the optimum
number of moves to sort the next larger Rn i.e. R11 has been computed;
(c) an algorithm conjectured to compute the optimum number of moves
to sort a given Rn has been designed.

Keywords: Permutations · Sorting · Cayley graphs · Upper bound ·
Set-Rotate · Pair-Exchange.

1 Introduction

3 Sorting a permutation can be either in an increasing or a decreasing order.
In this article, increasing order is employed. The alphabet for the permutations
is Σ = (1, 2, 3, . . . , n). LE operation consists of two generators: (i) Rotate that
cyclically left shifts the entire permutation and (ii) Exchange that swaps the
elements at the two left most positions. The application of (i) and (ii) yields
the corresponding moves L and E respectively. 1-based indexing is employed,
thus, the two leftmost indices are one and two. Sn is the set of all permutations
over Σ. Rn is the reverse permutation of Σ, i.e. Rn = (n, n− 1, . . . , 3, 2, 1). The
identity permutation In = (1, 2, 3, . . . , n−1, n). The problem of transforming Rn

into In (i.e. sorting Rn) with LE operation is of theoretical interest and has been
studied. The problem appears in OEIS [2] as follows “A048200 Minimal length
pair-exchange/set-rotate sequence to reverse n distinct ordered elements”.

3 A preliminary version of this article appears in ICACDS 2019 [1].

The optimum number of moves to sort Rn with LE appears with a sequence
number of A048200, OEIS [2] where the values are known only for n ≤ 11 [2]
(n = 11 is our contribution). We establish the first upper bound on the number
of moves required to sort Rn with LE.

A Cayley graph Γ corresponding to an operation O with a generator set G
consists of n! vertices each corresponding to a unique permutation that denotes
it. An edge from a vertex u to another vertex v indicates that when a generator
g ∈ G acts upon permutation u yields v. Applying a generator is commonly
known as making a move. An upper bound k to sort any π ∈ Sn indicates that
the distance between any two permutations in Γ is at most k. An exact upper
bound equals the diameter of Γ [4]. Cayley graphs are shown to posses various
desirable properties in the design of computer interconnection networks [4, 9].
Various operations to sort permutations have been posed [9]. A permutation
models a genome where a gene is presumed to be unique and an operation like
transposition, reversal etc. models the corresponding mutation. Thus, transform-
ing permutations with various operations has applications in genomic studies.

Jerrum showed that when the number of generators is greater than one, the
minimum sequence of generators (also called as distance) to sort a permutation
is hard to compute [3]. LE operation has two generators and the complexity of
transforming one permutation in to another with LE operation is not known.
Exchange move is a reversal of length two, in fact it is a prefix reversal of length
two. Chen and Skiena studied sorting permutations of length n with reversals of
size p [6]. For both permutations and circular permutations for all n and p, they
characterized the number of equivalence classes of permutations. For sorting all
circular permutations of length n that can be sorted by reversals of length p an
upper bound of O(n2/p+ pn) and a lower bound of Ω(n2/p2 + n) were shown.
For sorting permutations with (unrestricted) prefix reversals the operation that
has n − 1 generators, the best known upper bound is 18n/11 + O(1) [5]. In
LE operation, Rotate cyclically shifts the entire permutation whereas in [7] a
modified bubblesort is considered, where, in addition to the regular moves, a
swap is allowed between elements at positions 1 and n. Given an operation O,
all the moves of O constitute its generator set. Jerrum showed that when the
number of generators is greater than one, the minimum sequence of generators to
sort a permutation is hard to compute [3]. LE operation has two generators and
the complexity of transforming one permutation into another with LE operation
is not known. We call O symmetric if for any move of O its inverse also belongs
to O. Exchange is inverse of itself whereas Rotate does not have an inverse.
Thus, LE is not symmetric. Further, LE is very restrictive due to the presence
of Rotate move compared to the other operations that are frequently applied
in genetic studies e.g. [8]. The methodology of this article might be helpful for
problems whose generator set does not have a Rotate generator. Research in
the area of Cayley graphs pertaining to their efficacy in modelling a computer
interconnection network, their properties in terms of diameter, presence of greedy
cycles in them etc. has been active [12–16].

Two permutations are equivalent if one can be transformed into another
by applying a finite number of Rotate moves. In order to show that LE opera-
tion generates the entire symmetric group Sn, we need only show that any two
elements can be swapped.

Transformation of strings also has been extensively studied [17, 18]. Several
string transformation problems including the burnt pancake distance problem
are shown to be NP-hard [18]. An operation called as short reversal on strings
has been defined [8] that has exactly two types of generators. The computation
of short reversal distance has been reduced to the computation of a Maximum
Independent Set on the corresponding graph that is computed from the two
given input strings [10] an efficient algorithm for it has been designed in [11].

Observation 1 Any two elements can be swapped with LE operation.

Proof. Consider two arbitrary elements a and b in a permutation π. WLOG as-
sume that a is to the left of b. So π = (. . . , u, a, v, . . . , x, b, y, . . .). First we perform
a sequence of Rotate moves to yield (a, v, . . . , x, b, y, . . . , u). Here we perform a se-
quence of (Exchange followed by Rotate) to yield (a, b, y, . . . , u, v, . . . , x,). After
Rotate, Exchange, Rotate this yields (b, . . . , u, v, . . . , x, a, y) where a is between
x, y. We follow the same procedure to place b between u and v. Then we will
get a permutation that is equivalent to the permutation in which a and b are
swapped. Rotate moves accomplish the rest of the task.

Let π be the one based index array containing the input permutation. The
element at an index i of π is denoted by π[i]. Initially for all i, π[i] = Rn[i].
A block is a sublist (continuous elements of a permutation) that is sorted. Let
EL denote Exchange move followed by a Rotate move. Further, let (EL)p be
p consecutive executions of EL. Let Lp be p consecutive executions of L. We
define a permutation Pr,n ∈ Sn as follows. The elements 1, 2, 3, . . . , r are in
sorted order. However, (n, n − 1, . . . , r + 1) that we call U(Pr,n) is inserted in
between. Thus, (1, 2, 3, . . . , r) is split into two blocks with U(Pr,n) in between.
Further, the starting position of U(Pr,n) in Pr,n is x + 2 where r = 2k − x and
2k−1 < r ≤ 2k. Let M(n) be the number of moves required to sort Rn with LE.
Let f(x) denote the number of additional moves required to sort Rn with LE
when compared to Rn−1. Therefore, number of moves required to sort Rn with
LE is sum of all f(x) where x ranges from 1 to n.

2 Algorithm

The algorithm that we design is called Algorithm LE. The algorithm first trans-
forms Rn into P3,n by executing n− 2 L moves and an E move. Subsequently,
Pi+1,n is obtained from Pi,n by executing the moves specified by Lemma 2. Thus,
eventually we obtain Pn,n which is In. Pseudo Code for the Algorithm LE is
shown below.

Algorithm LE
Input: Rn. Output: In. Initialization:∀i π[i] = Rn[i]. All moves are executed on π.

Algorithm 1 Algorithm LE

for r ∈ (2, . . . , n− 1) do
if r=2 then

Execute Ln−2

Execute E move
else

if r = 2k for some k then
Execute (EL)n−r

else
x← (mink s.t. 2k ≥ r)
Execute Lx−r

Execute (EL)n−r−1

Execute L move
Execute (EL)2r−x−1

Execute L move
end if

end if
end for

Lemma 1. The starting position of U(Pr,n) in Pr,n is x + 2 where r = 2k − x
and 2k−1 < r ≤ 2k.

Proof. Executing n−2 L moves and an E moves on Rn yields (1, 2, n, n−1, . . . , 3)
which is P3,n. Since, 3 = 22 − 1, x = 1. Thus, x + 2 = 1 + 2 = 3. If we
observe the starting position of U(P3,n) in P3,n is x + 2 = 3. Hence, lemma
is true for r = 3. Assume, that lemma is true for r = 2k − x. So, Pr,n is
(1, 2, . . . , x+ 1, n, n− 1, . . . , r + 1, x+ 2, x+ 3, . . . , r) where starting position of
U(Pr,n) in Pr,n is x+2 where r = 2k−x and 2k−1 < r ≤ 2k. Executing Lx yields
(x+1, n, n−1. . . . , r+1, x+2, x+3, . . . , r, 1, 2, . . . , x). Then executing (EL)n−r−1

yields (x+1, r+1, x+2, x+3, . . . , r, 1, 2, . . . , x, n, n−1, . . . , r+2). Then executing
R yields (r+ 1, x+ 2, . . . , r, 1, 2, . . . , x, n, n− 1, . . . , r+ 2, x+ 1). Then executing
(EL)r−x−1 yields (r + 1, 1, 2, . . . , x, n, n− 1, . . . , r + 2, x+ 1, x+ 2, . . . , r). Then
executing L yields (1, 2, . . . , x, n, n− 1, . . . , r+ 2, x+ 1, x+ 2, . . . , r, r+ 1) which
is Pr+1,n. Since r = 2k−x, r+ 1 = 2k− (x− 1). Therefore, the starting position
of U(Pr+1,n) in Pr+1,n should be (x − 1) + 2 = x + 1. In Pr+1,n the starting
position of U(Pr+1,n) is in fact x+ 1. Hence by mathematical induction Lemma
1 holds for all values of r.

Lemma 2. The number of moves required to obtain Pr+1,n from Pr,n is (a)
2n− 2r if r= 2k for some k. (b) r − 2k + 2n− 2 otherwise.

Proof. Case (a): r = 2k for some k.
According to Lemma 1 the starting position of U(Pr,n) in Pr,n is 2. Therefore,
Pr,n is (1, n, n−1, . . . , r+1, 2, 3, . . . , r). Executing (EL)n−r yields Pr+1,n. There-
fore, number of moves to obtain Pr+1,n from Pr,n when r is in the form of 2k is
2 ∗ (n− r) = 2n− 2r.
Case (b): 2k−1 < r < 2k.

Let us suppose r = 2k−x where 2k−1 < r < 2k. According to Lemma 1 the start-
ing position of U(Pr,n) in Pr,n is x+ 2. Therefore, Pr,n is (1, 2, . . . , x+ 1, n, n−
1, . . . , r + 1, x + 2, x + 3, . . . , r). Executing L2k−r i.e. Lx yields (x + 1, n, n −
1, . . . , r + 1, x + 2, x + 3, . . . , r, 1, 2, . . . , x). Then executing (EL)n−r−1 yields
(x+1, r+1, x+2, . . . , r, 1, 2, . . . , x, n, n−1, . . . , r+2). Then executing R yields (r+

1, x+ 2, . . . , r, 1, 2, . . . , x, n, n− 1, . . . , r+ 2, x+ 1). Then executing (EL)2r−2
k−1

i.e. (EL)r−x−1 yields (r+1, 1, 2, . . . , x, n, n−1, . . . , r+2, x+1, x+2, . . . , r).Then
executing L yields Pr+1,n. Therefore, number of moves to obtain Pr+1,n from Pr,n

when r is not in the form of 2k is 2k−r+(2∗(n−r−1))+1+(2∗(2r−2k−1))+1
= r − 2k + 2n− 2.

3 Analysis

Lemma 3. The number of moves required to obtain P3,n from Rn is 1 more
than the number of moves required to obtain P3,n−1 from Rn−1.

Proof. P3,n is obtained from Rn by executing n − 2 L moves and an E move,
i.e. a total of n − 1 moves. P3,n−1 is obtained from Rn−1 by executing n − 3 L
moves and an E move, in a total of n−2 moves. Therefore, the number of moves
required to obtain P3,n from Rn is 1 more than the number of moves required
to obtain P3,n−1 from Rn−1.

Lemma 4. The number of moves required to obtain Pr+1,n from Pr,n is 2 more
than the number of moves required to obtain Pr+1,n−1 from Pr,n−1 ∀r ∈ (3, . . . , n−
2).

Proof. (a) According to Lemma 2, if r = 2k for some k, the number of moves
required to obtain Pr+1,n from Pr,n is 2n − 2r where as the number of moves
required to obtain Pr+1,n−1 from Pr,n−1 is 2(n−1)−2r = 2n−2r−2. Therefore,
the number of moves required to obtain Pr+1,n from Pr,n is 2 more than number
of moves required to obtain Pr+1,n−1 from Pr,n−1.
(b) According to Lemma 2, if 2k−1 < r < 2k for some k, the number of moves
required to obtain Pr+1,n from Pr,n is r−2k+2n−2 where as the number of moves
required to obtain Pr+1,n−1 from Pr,n−1 is r−2k+2(n−1)−2 = r−2k+2(n)−4.
Therefore, the number of moves required to obtain Pr+1,n from Pr,n is 2 more
than number of moves required to obtain Pr+1,n−1 from Pr,n−1.
From (a) and (b) it follows that Lemma 4 holds for all r ∈ (3, 4, . . . , n− 2).

Lemma 5. If x = 2k + 1 for some k then f(x) = 2x− 5.

Proof. Sorting of Rx−1 involves (P3,x−1, P4,x−1, . . . , Px−1,x−1) as intermediate
permutations. According to Lemma 3, the number of moves required to obtain
P3,x from Rx is 1 more than the number of moves required to obtain P3,x−1 from
Rx−1. According to Lemma 4, the number of moves required to obtain Pr+1,x

from Pr,x is 2 more than number of moves require to obtain Pr+1,x−1 from Pr,x−1
∀r ∈ (3, 4, . . . , x− 2). Since, x = 2k + 1, x− 1 = 2k. According to Lemma 2 the

number of steps required to obtain Px,x i.e. Ix from Px−1,x is 2x− 2(x− 1) = 2.
Therefore, number of additional moves required for sorting Rx when compared
to Rx−1 when x = 2k + 1 for some k is f(x) = 1 + 2(x− 4) + 2 = 2x− 5.

Lemma 6. If x = 2k + 2 for some k, f(x) = 3x− 6.

Proof. Sorting of Rx−1 involves (P3,x−1, P4,x−1, . . . , Px−1,x−1) as intermediate
permutations. According to Lemma 3, the number of moves required to obtain
P3,x from Rx is 1 more than the number of moves required to obtain P3,x−1 from
Rx−1. According to Lemma 4, the number of moves required to obtain Pr+1,x

from Pr,x is 2 more than number of moves require to obtain Pr+1,x−1 from Pr,x−1
∀r ∈ (3, 4, . . . , x − 2). Since, x = 2k + 2, x − 1 = 2k + 1 = 2k+1 − (2k − 1) =
2k+1 − (x− 3). According to Lemma 2, the number of steps required to obtain
Px,x i.e Ix from Px−1,x is (x−1)−2k+1+2x−2 = (x−1)−2x+4+2x−2 = x+1.
Therefore, number of additional moves required for sorting Rx when compared
to Rx−1 when x = 2k + 2 for some k is f(x) = 1 + 2(x− 4) + (x+ 1) = 3x− 6.

Lemma 7. If x not in the form 2k + 1 or 2k + 2 then f(x) = f(x− 1) + 5.

Proof. Recall, f(x) gives us number of additional moves required to sort Rx with
LE when compared to Rx−1. From Lemma 3 and Lemma 4, we can say that
difference between number of moves required to obtain Px−2,x−1 from Rx−1 and
the number of moves required to obtain Px−2,x−2 i.e. Ix−2 from Rx−2 is same as
the difference between number of moves required to obtain Px−2,x from Rx and
the number of moves required to obtain Px−2,x−1 from Rx−1
(a) According to Lemma 4, the number of moves required to obtain Px−1,x from
Px−2,x is 2 more than number of moves require to obtain Ix−1 from Px−2,x−1 .
(b)Let z be the number of moves require to obtain Ix−1 from Px−2,x−1. Since
x− 1 cannot be of the form 2k for some k, according to Lemma 2 z = (x− 2)−
2k + 2(x− 1)− 2 = x− 2k + 2x− 6. Similarly, the number of moves require to
obtain Ix from Px−1,x is (x− 1)− 2k + 2(x)− 2 = x− 2k + 2x− 3 = z + 3. The
number of moves require to obtain Ix from Px−1,x is 3 more than the number of
moves require to obtain Ix−1 from Px−2,x−1.
Therefore, from (a) and (b), f(x) = f(x− 1) + 2 + 3 = f(x− 1) + 5.

Theorem 1. An upper bound for number of moves required to sort Rn with LE
is 11

6 n
2.

Proof. According to Lemma 5, the value of f(x) when x = 2k + 1 for some k is
2x− 5.
Therefore, for some k,
f(2k + 1) = (2 ∗ (2k + 1))− 5 = 2k+1 − 3
According to Lemma 6, the value of f(x) when x = 2k + 2 for some k is 3x− 6.
f(2k + 2) = (3 ∗ (2k + 2))− 6 = 3 ∗ 2k

According to the Lemma 7,

f(2k + 3) = f(2k + 3) + 5

f(2k + 3) = (3 ∗ (2k)) + 5

Similarly, f(2k + 4) = (3 ∗ (2k)) + 5 + 5

f(2k + 5) = (3 ∗ (2k)) + 5 + 5 + 5

...

f(2k + 2k) = (3 ∗ (2k)) + (5 + 5 + . . .+ (2k − 2)times)

Let A(k) = f(2k + 3) + f(2k + 4) + . . .+ f(2k + 2k)

= (3 ∗ 2k ∗ (2k − 2)) + (5 + 10 + 15 + . . .+ (2k − 2)terms)

= (3 ∗ 2k ∗ (2k − 2)) +
1

2
(5 ∗ (2k − 2) ∗ (2k − 1))

=
11

2
22k − 27

2
2k + 5

Let B(k) = f(2k + 1) + f(2k + 2) +A(k)

= f(2k + 1) + f(2k + 2) + f(2k + 3) + . . .+ f(2k + 2k)

From Lemma 5 and Lemma 6,

B(k) = 2k+1 − 3 + (3 ∗ 2k) +
11

2
22k − 27

2
2k + 5

=
11

2
22k − 17

2
2k + 2

B(log2(
⌈n

2

⌉
)) = f(

⌈n
2

⌉
+ 1) + f(

⌈n
2

⌉
+ 2) + . . .+ f(

⌈n
2

⌉
+
⌈n

2

⌉
)

Therefore, for M(n) the total number of moves to sort Rn we obtain the follow-
ing recurrence relation.

M(n) ≤M(
⌈n

2

⌉
) +B(log2(

⌈n
2

⌉
))

=

log2 n∑
k=1

B(log2(
⌈ n

2k

⌉
))

=

log2 n∑
k=1

11

2
22 log2(d n

2k
e) − 17

2
2log2(d n

2k
e) + 2

(Ignoring the lower order terms)

≤
log2 n∑
k=1

11

2
∗ 22 log2(d n

2k
e)

≤
log2 n∑
k=1

11

2
∗ 22 log2(

n

2k
+1)

=

log2 n∑
k=1

11

2
∗ (

n

2k
+ 1)2

(Ignoring the lower order terms)

≈
log2 n∑
k=1

11

2
∗ (

n2

22k
)

≤
∞∑
k=1

11

2
∗ (

n2

22k
)

=
11

2
∗ n

2

3

=
11

6
∗ n2

Therefore, an upper bound for number of moves required for Rn with LE is 11n2

6 .

4 Optimum Algorithm

In this section we design an algorithm, Algorithm LE1 that sorts Rn in opti-
mum number of moves for n = 1...11. We claim that Algorithm LE1 indeed
sorts Rn in optimum number of moves. We define permutation Vr,n ∈ Sn as
follows. If n is even Vr,n is divided into 4 sublists. Sublist (r, r− 1, . . . , n2 + 1) is
denoted by F1,r(π). Sublist (r + 1, r + 2, . . . , n) is denoted by F2,r+1(π).Sublist
(r − n

2 , r −
n
2 − 1, . . . , 2, 1) is denoted by F3,r−n

2
(π). Sublist (r − n

2 + 1, r −
n
2 + 2, . . . , n2) is denoted by F4,r−n

2 +1(π). Then Vr,n is obtained by concate-
nating sublists F1,r, F2,r+1, F3,r−n

2
, F4,r−n

2 +1. If n is odd Vr,n is divided into 5

blocks. Sublist (r, r− 1, . . . , n+1
2 , n−12) is denoted by G1,r(π). Sublist (r+ 1, r+

2, . . . , n − 2) is denoted by G2,r+1(π). Sublist (r − n−1
2 , r − n−1

2 − 1, . . . , 2, 1)
is denoted by G3,r−n−1

2
(π). Sublist (n − 1, n) is denoted by G4,n−1(π). Sublist

(r− n−1
2 +1, r− n−1

2 +2, . . . , n−12 −1) is denoted by G5,r−n−1
2 +1(π). Then Vr,n is

obtained by concatenating sublists G1,r, G2,r+1, G3,r−n−1
2
, G4,n−1, G5,r−n−1

2 +1.

Let (MS)1,i,n denotes execution of move sequence (EL)i followed by L
n
2−i fol-

lowed by (EL)i followed by L
n
2−i. Let (MS)2,i,n denote execution of move se-

quence (EL)i followed by L
n−1
2 −i followed by (EL)i+1 followed by L

n−1
2 −i.

4.1 Analysis

Lemma 8. If n is even executing (MS)1,r−n
2−1,n transforms Vr,n to Vr−1,n.

Proof. According to definition if n is even Vr,n is (r, r − 1, . . . , n2 + 1, r + 1, r +
2, . . . , n, r − n

2 , r −
n
2 − 1, . . . , 3, 2, 1, r − n

2 + 1, r − n
2 + 2, . . . , n2). Executing

(EL)r−
n
2−1 yields (r, r + 1, r + 2, . . . , n, r − n

2 , r −
n
2 − 1, . . . , 2, 1, r − n

2 + 1, r −
n
2 + 2, . . . , n2 , r − 1, r − 2, . . . , n2 + 1). Then executing L

n
2−(r−

n
2−1) i.e. Ln−r+1

yields (r− n
2 , r−

n
2 − 1, . . . , 2, 1, r− n

2 + 1, r− n
2 + 2, . . . , n2 , r− 1, r− 2, . . . , n2 +

1, r, r+ 1, . . . , n. Then executing (EL)r−
n
2−1 yields (r− n

2 , r−
n
2 + 1, . . . , n2 , r−

1, r − 2, . . . , n2 + 1, r, r + 1, . . . , n, r − n
2 − 1, r − n

2 − 2, . . . , 2, 1). Then executing

L
n
2−(r−

n
2−1) i.e Ln−r+1 yields (r − 1, r − 2, . . . , n2 + 1, r, r + 1, . . . , n, r − n

2 −
1, r − n

2 − 2, . . . , 2, 1, r − n
2 , r −

n
2 + 1, . . . , n2) which equals to concatenation of

sublists F1,r−1(π), F2,r(π), F3,r−n
2−1(π), F4,r−n

2
(π). Therefore obtained permu-

tation is Vr−1,n.

Algorithm LE1

Input:Rn

Output:In
Initialization:∀i π[i] = Rn[i]. All operations are executed on π.

if (n is even) then
for i ∈ ((n

2
− 1), . . . , 2) do

Execute (MS)1,i,n
end for
Execute EL
Execute L

n
2
−1

Execute E
else if (n is odd) then

Execute EL
Execute L
for i ∈ ((n−1

2
− 1), . . . , 2) do

Execute (MS)2,i,n
end for
Execute EL
Execute L

n−1
2

−1

Execute (EL)2

end if

Lemma 9. If n is odd executing (MS)2,r−n−1
2 ,n transforms Vr,n to Vr−1,n.

Proof. According to definition if n is odd Vr,n is (r, r−1, . . . , n+1
2 , n−12 , r+1, r+

2, . . . , n−2, r− n−1
2 , r− n−1

2 −1, . . . , 2, 1, n−1, n, r+ n−1
2 +1, r+ n−1

2 +2, . . . , n−12 −
1). Execution of (EL)r−

n−1
2 yields (r, r + 1, r + 2, . . . , n− 2, r − n−1

2 , r − n−1
2 −

1, . . . , 2, 1, n−1, n, r+ n−1
2 +1, r+ n−1

2 +2, . . . , n−12 −1, r−1, . . . , n+1
2 , n−12). Then

execution of L
n
2−(r−

n−1
2) i.e. Ln−r−1 yields (r − n−1

2 , r − n−1
2 − 1, . . . , 2, 1, n −

1, n, r + n−1
2 + 1, r + n−1

2 + 2, . . . , n−12 − 1, r − 1, . . . , n+1
2 , n−12 , r, r + 1, r +

2, . . . , n− 2). Then execution of (EL)r−
n−1
2 +1 yields (r − n−1

2 , r + n−1
2 + 1, r +

n−1
2 + 2, . . . , n−12 − 1, r − 1, . . . , n+1

2 , n−12 , r, r + 1, r + 2, . . . , n − 2, r − n−1
2 −

1, . . . , 2, 1, n − 1, n). Then execution of L
n
2−(r−

n−1
2) i.e. Ln−r−1 yields (r −

1, . . . , n+1
2 , n−12 , r, r+1, r+2, . . . , n−2, r− n−1

2 −1, . . . , 2, 1, n−1, n, r− n−1
2 , r+

n−1
2 + 1, r + n−1

2 + 2, . . . , n−12 − 1) which equals to concatenation of sublists

G1,r−1(π), G2,r(π), G3,r−n−1
2 −1

(π), G4,n−1(π), G5,r−n−1
2

(π). Therefore obtained

permutation is Vr−1,n.

Lemma 10. Algorithm LE1 is correct.

Proof. Case (a): n is even
According to definition Vr,n = Rn for r = n. According to Lemma 8 if n is even
executing (MS)1,r−n

2−1,n transforms Vr,n to Vr−1,n. Therefore after executing
(MS)1,r−n

2−1,n for r ranges from n to n
2 +3 yields Vn

2 +2,n which equals (n
2 +2, n2 +

1, n2 +3, n2 +4, . . . , n, 2, 1, 3, 4, . . . , n2). Then executing (EL) yields (n
2 +2, n2 +3, n2 +

4, . . . , n, 2, 1, 3, 4, . . . , n2 ,
n
2 +1). Then executing L

n
2−1 yields (2, 1, 3, 4, . . . , n2 ,

n
2 +

1, n2 + 2, n2 + 3, n2 + 4, . . . , n) Then executing E yields (1, 2, 3, 4, . . . , n2 ,
n
2 + 1, n2 +

2, n2 + 3, n2 + 4, . . . , n) which is In.
Case (b): n is odd
Execution of (EL) on Rn yields (n−1, n−2, . . . , 1, n). Then execution of L yields
(n− 2, n− 3, . . . , 1, n, n− 1) which is equal to Vn−2,n when n is odd. According
to Lemma 9 if n is odd executing (MS)2,r−n−1

2 ,n transforms Vr,n to Vr−1,n.

Therefore after executing (MS)2,r−n−1
2 ,n for r ranges from n−2 to n−1

2 +2 yields

Vn−1
2 +1,n which equals (n−1

2 +1, n−12 , n−12 +2, . . . , n−2, 1, n−1, n, 2, 3, . . . , n−12 −
1). Executing (EL) yields (n−1

2 + 1, n−12 + 2, . . . , n−2, 1, n−1, n, 2, 3, . . . , n−12 −
1, n−12). Then executing L

n−1
2 −1 yields (1, n− 1, n, 2, 3, . . . , n−12 − 1, n−12 , n−12 +

1, n−12 +2, . . . , n−2). Then executing (EL)2 yields (1, 2, 3, . . . , n−12 −1, n−12 , n−12 +
1, n−12 + 2, . . . , n− 2, n− 1, n) which is In.

Theorem 2. The number of moves required to sort Rn with LE is (a) 3n
2

4 − 2n

if n is even, (b) 3n
2−10n+15

4 if n is odd.

Proof. Case (a): n is even
Initially (MS)1,i,n is executed for i ranges from n

2 − 1 to 2. Recall, execution of
(MS)1,i,n involves execution of (EL)i followed by L

n
2−i followed by execution

of (EL)i and then execution of L
n
2−i. Therefore, number of moves involved in

(MS)1,i,n is 2i+ n
2 − i+ 2i+ n

2 − i = n+ 2i. Hence, number of moves involved

in execution of (MS)1,i,n where i ranges from n
2 − 1 to 2 is

∑n
2−1
i=2 (n+ 2i) =

n ∗ (n
2 − 2) + 2 ∗

∑n
2−1
i=2 i = 3n2

4 −
5n
2 − 2. Then execution of (EL) followed by

L
n
2−1 followed by E yields In. Therefore, total number of moves required to sort

Rn with LE when n is even is 3n2

4 −
5n
2 − 2 + 2 + n

2 − 1 + 1 = 3n2

4 − 2n.
Case (b): n is odd
Initially EL followed by L move is executed on Rn. Then (MS)2,i,n is executed

for i ranges from n−1
2 −1 to 2. And finally execution of (EL) followed by L

n−1
2 −1

followed by (EL)2 sorts Rn. Recall, execution of (MS)2,i,n involves execution of

(EL)i followed by L
n−1
2 −i followed by execution of (EL)i+1 and then execution

of L
n−1
2 −i. Therefore, number of moves involved in (MS)2,i,n is 2i+ n−1

2 − i+
2(i + 1) + n−1

2 − i = n + 2i+ 1. Hence, number of moves involved in execution

of (MS)2,i,n where i ranges from n−1
2 − 1 to 2 is

∑n−1
2 −1

i=2 (n+ 2i+ 1) = (n +

1) ∗ (n−1
2 − 2) + 2 ∗

∑n−1
2 −1

i=2 i = 3n2

4 − 3n− 15
4 . Therefore, total number of moves

required to sort Rn with LE when n is odd is 2+1+ 3n2

4 −3n− 15
4 +2+n−1

2 −1+4 =
3n2−10n+15

4 .

5 Conclusions

We derived a novel upper bound for LE operation. This is operation has the
fewest generators that are needed to generate Sn. A variation of LE is the LRE
operation where an additional right rotate is allowed. For LRE operation we
conjecture that the optimum number of moves is (n2 − n− 4)/2 ∀ n > 3.

References

1. Kuppili1 S. S., Chitturi1, B., Srinath T.: An Upper Bound for Sorting Rn with LE.
ICACDS 2019.

2. The On-Line Encyclopedia of Integer Sequences: oeis.org.
3. Jerrum, M. R.: The complexity of finding minimum-length generator sequences.

Theoretical Computer Science, 36, 265-289 (1985).
4. Akers, S. B., Krishnamurthy, B.: A group-theoretic model for symmetric intercon-

nection networks. IEEE Transactions on Computers, 38(4):555–566 (1989).
5. Chitturi, B., Fahle, W., Meng, Z., Morales, L., Shields, C. O., Sudborough H.: An

(18/11) n upper bound for sorting by prefix reversals. Theoretical Computer Science,
410(36), 3372-3390 (2009).

6. Chen, T., Skiena, S. S.: Sorting with fixed-length reversals. Discrete Applied Math-
ematics, 71(1-3), 269-295 (1996).

7. Feng, X., Chitturi,B., Sudborough, H.: Sorting circular permutations by bounded
transpositions. In Advances in Computational Biology, (pp. 725-736). Springer, New
York, NY (2010).

8. Chitturi, B., Sudborough, H., Voit, W., Feng, X.: Adjacent swaps on strings. In
International Computing and Combinatorics Conference, (pp. 299-308). Springer,
Berlin, Heidelberg (2008).

9. Lakshmivarahan, S., Jho, J-S., and Dhall, S. K.: Symmetry in interconnection net-
works based on Cayley graphs of permutation groups: A survey. Parallel Computing,
19:361–407, (1993).

10. Chitturi, B.: Perturbed Layered Graphs. ICACCP (2019).
11. Chitturi, B., Balachander, S., Satheesh S., and Puthiyoppil K. Layered Graphs:

Applications and Algorithms. Algorithms 2018, 11(7), 93.
12. Mokhtar, H.: A few families of Cayley graphs and their efficiency as communication

networks. Bulletin of the Australian Mathematical Society 95, no. 3 : 518-520 (2017).
13. Zhang, T., and Gennian G.: Improved lower bounds on the degreediameter prob-

lem. Journal of Algebraic Combinatorics, 1-12 (2018).
14. Chitturi,B., and Das, P.:Sorting permutations with transpositions in O(n3) amor-

tized time. Theoretical Computer Science, (2018).
15. Erskine, G., and James T.: Large Cayley graphs of small diameter. Discrete Applied

Mathematics (2018).
16. Gostevsky, D.A. and Konstantinova, E.V.: Greedy cycles in the star graphs. Dis-

crete mathematics and mathematical cybernetics, 15(0): 205-213 (2018).

17. Fertin, G., Labarre, A., Rusu, I., Vialette, S. and Tannier, E.: Combinatorics of
genome rearrangements. MIT press (2009).

18. Chitturi, B.: A note on complexity of genetic mutations. Discrete Mathematics,
Algorithms and Applications, 3.03: 269-286 (2011).

