
Load	Balancer	in	OpenStack	 	 By	Xiangyu	Wang	
	

1	

Load	Balancer	in	OpenStack	

Introduction	of	Load	Balancer	
Load	Balancing	distributes	work	loads	on	a	set	of	computing	resources.	It	

aims	to	optimize	resource	utilization,	maximize	throughput,	minimize	response	
time,	and	avoid	overload	of	any	single	resource	

Here,	to	demonstrate	how	Load	Balancer	works,	we	focus	on	network	load	
balancing.	It	distributes	client’s	HTTP	request	across	a	set	of	servers	in	the	load	
balancer	pool.	The	response	from	one	of	the	servers	includes	the	server’s	hostname.	

OpenStack	provides	Load	Balance	as	a	Service	(LBaas),	which	is	an	advanced	
service	of	neutron.	Lbaas	allows	for	proprietary	and	open-source	load	balancing	
technologies	to	drive	the	actual	load	balancing	of	requests.	

Here,	Haproxy	is	used	in	OpenStack	to	implementing	load	balancing.	
	

In	OpenStack,	the	components	included	in	Load	Balancer	are	as	follows:	
Ø Load	Balancer	pool	
Ø Members	of	the	pool	
Ø The	Virtual	IP	(VIP)	of	the	pool	
Ø The	Floating	IP	associated	with	VIP	
Ø Monitor	

Requirements	for	the	Members	of	the	pool	
The	members	of	the	Load	Balancer	pool	must	be	servers	that	supports	HTTP	or	
HTTPS	protocol	to	respond	with	its	hostname.		

To	support	HTTP	protocol	
There	are	two	ways	to	set	up	a	HTTP	server	which	can	respond	with	its	hostname.	

1. Using	Shell	command.	
Before	running	the	Shell	command,	make	sure	that	Apache	service	has	been	

stopped	because	Apache	also	listens	to	port	80.		
To	stop	it,	type	“service	Apache2	stop”	
Run	the	following	command:	

While	true;	do	echo	–e	“HTTP/1.1	200	OK	\r\n\r\n	Welcome	to	`hostname`”	|	
sudo	nc	–l	–p	80;	done	
	

2. Using	Apache	
The	VM	should	boot	from	Linux	with	Apache	and	PHP	installed.	

1) Start	Apache	service	
Before	starting	Apache,	make	sure	no	Shell	scripts	are	running	to	
listen	port	80.	

2) /etc/apache2/sites-enabled/000-default.conf:		
To	configure	the	default	webpage	and	the	default	directory	for	that.	



Load	Balancer	in	OpenStack	 	 By	Xiangyu	Wang	
	

2	

The	default	webpage	for	Apache	is	“index.html”,	which	resides	
“/var/www/html/”.	It’s	not	necessary	to	change	this.	

	
3) Provide	the	files	which	is	needed	to	show	the	hostname	

All	the	files	are	in	“/var/www/html/loadbalancer/”,	they	are	as	
follows:	

Ø http.html,	http.js,	
Note:	In	http.js,	the	floating	IP	should	match	with	the	one	of	
the	pool	

Ø hostname.php	

To	support	HTTPS	protocol	
Apache	can	be	used	to	set	up	a	server	supporting	HTTPS	protocol.		
The	environment	requirements	for	such	a	server	is	Linux	with	Apache	and	PHP.	It	
can	be	implemented	in	the	following	steps:	

1) /etc/apache2/sites-enabled/000-default-ssl.conf	
To	make	the	server	support	HTTPS,	/etc/apache2/sites-available/default-
ssl.conf	is	copied	to	/etc/apache2/sites-enabled/	
	
Cp	/etc/apache2/sites-available/default-ssl.conf			/etc/apache2/sites-
enabled/000-default-ssl.conf	
	
It’s	the	configuration	file	for	ssl.	Here,	no	change	is	made.	

2) Provide	the	files	which	is	needed	to	show	the	hostname	
This	is	the	same	as	in	setting	up	a	HTTP	server.	
All	the	files	are	in	“/var/www/html/loadbalancer/”,	they	are	as	follows:	

Ø https.html,	https.js	
Note:	In	https.js,	the	floating	IP	should	match	with	the	one	of	the	pool.	

Ø hostname.php	
3) Enable	SSL	module	

In	CLI	window,	type	in	“a2enmod	ssl”	to	enable	SSL	module.	
“a2dismod	ssl”	can	be	used	to	disable	SSL.	
After	the	execution	of	this	command,	restarting	Apache	service	is	required,	
so	type	in	“service	Apache2	restarted”	

A	Snapshot	in	which	HTTP/HTTPS	is	available	
	
A	snapshot	has	been	created	which	has	implemented	both	services,	which	is	
“Loadbalancer”.		
Two	credentials	can	be	used	to	log	in:	

a) Username:	root,	password:	root	
b) Username:	chuck,	password:	chuck	

There	are	some	Shell	script	files	in	the	home	folder	to	test	Load	Balancer	under	the	
account	of		“chuck”.	



Load	Balancer	in	OpenStack	 	 By	Xiangyu	Wang	
	

3	

Implementation	of	Load	Balancer	
The	servers	that	will	be	balanced	by	Load	Balancer	have	been	created.	They	can	be	
called	HOST1,	HOST2,	HOST3….	Next,	the	Load	Balancer	can	be	implemented	by	
Horizon.	

1. Create	a	pool	
2. Assign	a	Virtual	IP	(VIP)	for	the	pool	
3. Associate	the	VIP	with	a	Floating	IP	
4. Add	the	servers	into	the	pool	
5. Add	a	monitor	

In	Juno,	only	CLI	can	complete	the	association.	
Neutron	lb-healthmonitor-associate	is	the	command	

6. Associate	the	monitor	with	the	pool	
After	all	the	above	steps,	a	Load	Balancer	has	been	implemented.	You	can	check	the	
status	of	all	the	servers	in	the	pool,	which	could	be	“active”	or	“inactive”.	
	
Note:	Servers	can	support	HTTP/HTTPS	concurrently,	while	a	pool	and	a	monitor	
which	have	been	associated	with	each	other	can	only	work	under	one	protocol.	
Therefore,	to	test	both	HTTP/HTTPS	protocols,	two	pools	and	two	monitors	should	
be	created	to	support	both	protocols	respectively.	

Test	of	Load	Balancer	
Let	“10.0.0.xxx”	be	the	floating	IP	of	the	pool	which	works	under	HTTP	protocol.	
Let	“192.168.xxx.xxx”	be	the	VIP	of	the	pool	which	works	under	HTTP	protocol.	
	
Let	“10.0.0.yyy”	be	the	floating	IP	of	the	pool	which	works	under	HTTPS	protocol.	
Let	“192.168.yyy.yyy”	be	the	VIP	of	the	pool	which	works	under	HTTPS	protocol.	
Before	the	test,	make	sure	the	Floating	IP	is	the	same	as	the	one	in	http.js	and	
https.js	
	
For	servers	which	are	implemented	with	Apache,	two	methods	can	be	used	to	test	
Load	Balancer:	

1. CLI	for	testing	HTTP	implemented	with	Shell	command	
Use	curl	to	send	HTTP	GET	request:	
Curl	–s	http://10.0.0.xxx	
	
Or	request	in	a	recursive	way:	
While	true;	do	curl	-s	http://10.0.0.xxx;	done	
	

2. CLI	for	testing	HTTP	implemented	with	Apache	
Use	curl	to	send	HTTP	GET	request:	
Curl	–s	http://10.0.0.xxx/loadbalancer/hostname.php	
	
Or	request	in	a	recursive	way:	
While	true;	do	curl	-s	http://10.0.0.xxx/loadbalancer/hostname.php;	done	



Load	Balancer	in	OpenStack	 	 By	Xiangyu	Wang	
	

4	

	
3. Web	browser	for	testing	HTTP	

Ø From	login	server,	start	Chrome	or	Firefox	and	type	in	
http://10.0.0.xxx/loadbalancer/http.html	to	test	HTTP	protocol.	

Ø In	the	webpage	opened,	press	“Start	Test”.		
Then	you	can	see	the	names	of	the	responding	server	are	displayed	on	
the	screen.	
	
Note:	for	browser,	after	one	session	is	created,	always	one	server	will	
respond	to	it.	So	you	can’t	see	hostnames	of	different	servers	
alternates	on	the	screen.	But	if	you	open	another	tab	and	test	the	Load	
Balancer	from	the	start,	different	hostnames	can	be	seen.	

	
4. CLI	for	testing	HTTPS	

Ø Use	curl	to	send	HTTP	GET	request:	
Curl	–s	-k	https://10.0.0.yyy/loadbalancer/hostname.php	
	

Ø Or	request	in	a	recursive	way:	
While	true;	do	curl	–s	-k	https://10.0.0.yyy/loadbalancer/hostname.php;	done	
	

5. Web	browser	for	testing	HTTPS	
Ø From	login	server,	start	Chrome	or	Firefox	and	type	in	

http://10.0.0.yyy/loadbalancer/http.html	to	test	HTTP	protocol.	
Ø In	the	webpage	opened,	press	“Start	Test”.		

Then	you	can	see	the	names	of	the	responding	server	are	displayed	on	
the	screen.	
	
Note:	for	browser,	after	one	session	is	created,	always	one	server	will	
respond	to	it.	So	you	can’t	see	hostnames	of	different	servers	
alternates	on	the	screen.	But	if	you	open	another	tab	and	test	the	Load	
Balancer	from	the	start,	different	hostnames	can	be	seen.	

	
	

	
	
	


