Multistream Classification with Heterogeneous Feature Space

Yifan Li, Yang Gao, Hemeng Tao, Latifur Khan and Patrick Brandt
The University of Texas at Dallas
Richardson, TX
Email:(yli, yxg122530, hxt160430, lkhan, pbrandt) @utdallas.edu

Abstract

Under a newly introduced setting of multistream classifica-
tion, two data streams are involved, which are referred to as
source and target streams. The source stream continuously
generates data instances from a certain domain with labels,
while the target stream does the same task without labels
from another domain. Existing approaches assume that do-
mains for both data streams are identical, which is not quite
true in reality, since data streams from different sources may
contain distinct features. Indeed, they may even have differ-
ent numbers of features. Furthermore, obtaining labels for
every instance in a data stream is often expensive and time-
consuming. Therefore, it has become an important topic to
explore whether labeled instances from other related streams
can be helpful to predict those unlabeled instances in a certain
stream. Note that domains of source and target streams may
have distinct feature spaces and data distributions. Our objec-
tive is to predict class labels of data instances in the target
stream by using the classifiers trained by the source stream.
We propose a framework of multistream classification by us-
ing projected data from a common latent feature space, which
is embedded from both source and target domains. Empiri-
cal valuation and analysis on both real-world and synthetic
datasets are performed to validate the effectiveness of our
proposed algorithm, comparing to state-of-the-art techniques.
Experimental results show that our approach significantly
outperforms other existing benchmarks.

Introduction

Data streams are crucial in the modern connected Internet
world, and they have attracted the attention of researchers
worldwide. Given important applications of data streams—
such as 10T, social networks, and surveillance-mining them
properly is becoming a more and more important topic to
explore. However, data stream mining is also a challeng-
ing task due to its distinctive nature. For example, a data
stream is theoretically infinite in length, therefore, its vol-
ume is very large. Meanwhile, it is possible that with high
velocity of data arrivals, class labels are not available im-
mediately after the arrival of new data instances, which
makes it difficult to update the model. These properties have
distinguished data stream mining significantly from tradi-

Copyright (© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

tional data mining problems (Hou, Zhang, and Zhou 2017;
Haque, Khan, and Baron 2016).

Normally, one assumption of classification model is that
source data with true labels are also representative to tar-
get data. However, since data streams are generated by non-
stationary processes, it is possible that arbitrary changes may
be introduced to data streams. Thus, using a model trained
by old source data may introduce bias in prediction (Herlihy
1993), and will lead to poor performance in predicting future
data labels. Thus, the model needs proper updates to adapt
the current concept.

When it comes to the setting of multiple streams, this
problem becomes even more challenging. The problem set-
ting is described and motivated by a multistream classifi-
cation (MSC) algorithm (Chandra et al. 2016). Two data
streams are involved simultaneously under this setting. One
is referred as the source stream, which contains data in-
stances with class labels generated from one non-stationary
process with labels. The other is referred as the target
stream, which consists of data generated from another non-
stationary process without labels.

In this paper, a domain adaptation setting is considered
within the multistream classification framework. There is a
need to address machine learning tasks of building models
in a one domain by using information available from another
related domain. Here, knowledge from the source domain
(stream) can be transferred to the target domain (stream) to
help get high prediction accuracy. This transfer process is
important in many circumstances where labels in a certain
domain are limited or too expensive to obtain (Arnold, Nal-
lapati, and Cohen 2007), which fits the need of multistream
by nature. Notice that here the feature representations (Num-
ber. of features) and distributions may not identical across
domains.

In practice, it is assumed that training data are provided
as a whole in advance (Pan and Yang 2010). However, un-
der a data stream setting, all instances may arrive in a se-
quential manner. Take online spam email detection for ex-
ample (Chen and Chen 2015). Normally, a classifier is built
using a static training dataset, and it is trained in batches
to detect spam emails as accurately as possible. However,
the very definition of spam varies from person to person. In
this case, the transfer of knowledge to personalize the spam
detector for each individual becomes critical. Even for a spe-

Domain A —e®——e-a—

Domain B

Figure 1: Feature Space Projection

cific person, the definition of spam could change over time.
During a certain time period one may consider an advertise-
ment from Zillow to be spam. When he starts to consider
buying a house, Zillow ads are not spam for him anymore.
Such problem can be formulated as a multistream learning
task, the objective of which is to build an online prediction
model for the target domain by using information available
in the source domain with distinct feature space. Compared
to the previous example, this task is more challenging, as
the concept is evolving in the data streams simultaneously
in heterogeneous source and target streams.

To sum up, the problem that we are trying to solve in-
volves two data streams with heterogeneous feature spaces,
and this is the aspect which no researchers have been work-
ing on in the past.

This paper proposes a framework, called MultiStream Do-
main Adaptation (MSDA), to handle the issues described
above. The main idea is to find a common feature space for
two distinct data streams. This idea is demonstrated in Fig-
ure 1. Data in domain A are one-dimensional and in domain
B are two-dimensional. By applying the proposed projec-
tion algorithm, we try to find a latent feature space that the
distributions in original and latent feature space are similar.
Meanwhile, the structure of data should be preserved, which
means distinct classes are still far apart, and the decision
boundaries for different categories should still be preserved.
Thus the core problem here is to find a feature space that

Figure 2: Feature Projection

maximize the similarity between original and projected la-
tent feature space. Main contributions of this paper are as
follows:

1. An embedding-based domain adaptation method is intro-
duced to address the challenges of adapting source and
target domains in a non-stationary environment.

2. A concept drift detection method is deployed under the
new multistream setting with domain adaptation. Under
this setting, true labels in the target stream is not required,
while only true labels in the source stream is used.

3. Our approach is empirically evaluated over several bench-
mark datasets, and the results are compared with state-
of-the-art methods. The performance of our proposed
method is significantly better than the other three meth-
ods.

Related Work

We outline related work under two topics, namely domain
adaptation and stream classification.

Domain Adaptation

One of fundamental assumptions in data mining, known
as the “stationary distribution assumption”, is that both the
training and test data are generated from the same domain
and thus represent the same data distribution (Zadrozny
2004). Therefore, common techniques normally cannot be
directly deployed when training and test data are from
different domains. The differences between domains can
be normally considered as two aspects: 1. distinct num-
ber of features; 2. distinct feature distributions. Several ap-
proaches have been proposed to learn a common feature rep-
resentation for domain adaptation (Ben-David et al. 2010;
Pan and Yang 2010). (Shi et al. 2010) proposed an linear
objective function to project a latent feature space for both
source and target domains. This approach focuses on static
data only. Recall that in stream feature space may evolve
over times across streams, which may trigger heterogeneous
feature space. (Zhao and Hoi 2010) uses a co-regularized
method to project target domain to source domain in an on-
line manner. However, this method also makes a strong as-
sumption that features in source dataset is a subset of those
in target dataset, which in reality, this is not always the case.
However, the method works in an incremental manner which
may be suitable for stream setting.

Similarly, as we stated in the previous section, it is chal-
lenging to derive an online method to reduce the distribution
different between domains. The state-of-the-art methods, in-
cluding deep learning, mostly address domain adaptation
problems for stationary data except (Zhao and Hoi 2010).
Thus, fitting domain adaptation frameworks to online data
streams is yet to explore.

Stream Classification

Data stream classification is a challenging task due to
its inherent properties, such as infinite length and concept
drift. The infinite length problem is addressed by divid-
ing the whole stream into fixed-size minibatches or using

a gradual forgetting mechanism. Recent approach (Bifet
and Gavalda 2007) handles this problem by remembering
only the instances within two consecutive concept drifts us-
ing a dynamically-sized minibatch. Concept drift detection
in multivariate data streams concentrates on tracking any
changes in the posterior class distribution, P(y|z). Instead
of tracking changes in P(y|z) directly, the approaches pro-
posed in (Haque et al. 2018) adopt the principle (Gama et
al. 2004) to detect this change indirectly by tracking drift in
the error rate of the underlying classifier. However, track-
ing drift in the error rate requires true labels of test data
instances, which are scarce in practice. Recent studies fo-
cus on confidence (Chandra et al. 2016) to detect changes in
distribution between two different time windows by detect-
ing change points in the process. Apart from working on a
single stream, these methods explicitly detect change points.

The problem setting described in this paper is motivated
by a Multistream Classification framework (Chandra et al.
2016). It proposes a solution which focuses on the classifi-
cation problems when there are asynchronous concept drifts
on source and target streams. Since stream classification is a
continuous process, data in the target stream is assumed to
be generated with very few labels. Yet, there is a strong as-
sumptions made for this work: thenumber of features in both
source and target streams is fixed. To overcome those ob-
stacles, our proposed approach relaxs this assumption. fea-
tures may not be exactly the same between domains, both
in number and correspondence. Furthermore, other features
in source stream may not have any mapping to features in
target stream and vice-versa.

Problem Formulation
Notations and Problem Statement

In Table 1, frequently used symbols in this paper are
listed. There are two continuous stream of data instances
generated from source domain D; and target domain D.
A data instance is denoted as (z, y), where x is a vector (m-
dimensional in source stream and n-dimensional in target
stream), and y is the corresponding class label. In the source
stream, both x5 and y, are available, while in the target do-
main only z, is available. Therefore, a multistream classifi-
cation with domain adaptation problem can be described as
follows:

Suppose X is a set of m-dimensional vectors and Yy is
the corresponding labels in a source stream from a certain
domain D, whereas X; is a set of n-dimensional vectors
in target stream from another domain D;. In our problem
setting, m # n. The objective is to construct a classifier M
that predicts class labels of z; € X using X, and Y.

Challenges

In the problem setting of multistream classification with
domain adaptation, there are two major challenges at the
same time. The first challenge is the adaptation of both
source and target domain, and it can be represented as
Dy # D;. As shown in Figure 2, two streams may have dif-
ferent number of instances. However, without loss of gen-
erality, buffers (windows) from these streams representing

Table 1: Notations

Symbol | Meaning

Dy Domain of source stream
D, Domain of target stream
S Source stream data
T Target stream data

X, Xy | Feature space of source stream with dimension
'm and that of target stream with dimension n

Ys, Vs Label space of source and target stream
Tg, Tt Data instance of source and target stream
Ys» Yt True and predicted label of a data instance in

source stream

Wy, Wy | Projection function to the source and target
space

Lg, Ly Projected data from source and target domain
to latent space

P, P, Probability distribution function of source and
target data
Ny, Size of sliding window

contiguous data points will have the same number of in-
stances V,,. Furthermore, each data point in source stream
may have a different number of features compared to those
in the target stream. Therefore, source data cannot be di-
rectly used as training data to learn the target task, and dis-
covering a latent feature space with k dimensions is the key
to handling the feature heterogeneity issue. The second chal-
lenge is the asynchronous concept drift in both source and
target streams. This phenomenon means that the data pat-
tern evolves, or more formally, the conditional probability
distribution changes over time in both streams. Here, the
problem can be described as Pl(y | x) # Pl(y | x) at
time ¢. Furthermore, we assume that source and target data
streams have asynchronous concept drifts, which means that
the drifts in both streams occur independently.

Proposed Approach

In this paper, we propose a Multistream Domain Adapta-
tion (MSDA) framework to address the major issues in our
problem setting. To achieve this goal, we establish a frame-
work with the following modules:

1. A domain adaptation module that helps find an optimized
latent subspace for both source and target streams.

2. A concept drift detection module that detects concept drift
in both source and target streams.

Applying these two modules together, once a concept drift
is detected, we use data instances from both streams in the
most recent window to update the feature mapping, so that
the domain adaptation problem can be addressed. The dia-
gram of this algorithm can be found in Figure 1.

First, a domain adaptation module is triggered to learn
projection functions for both source and target data instances
(step 1, 2 & line 2-6). Newly arriving instances are trans-
formed to latent feature representation accordingly (line 8-
11). Second, the change point detection module detects if
there is a significant change in either source or target streams
within the sliding windows Third, once a change point is de-
tected, new classifiers are trained based on these two buffers
from By and B; (step 3 & line 12-16). Finally, the newly up-
dated classifiers are used to predict the labels of adapted data

Algorithm 1 MSDA Algorithm

Require: Labeled source stream S, Unlabeled target stream
T, The size of sliding window N,,,. Similarity parameter

Ensure: Labels predicted on 7.

1: /* Initialization */

2: Bg, By < readData(S,T)

3. /* DA for initial buffer */

4: Wy, W, « genProject Function(Bs, By, B)

5: Lg, Ly < genProject Matrix(Bs, By, Wy, Wy)

6: M <+ buildModel(Ls,Ys)

7: while S or T exists do

8 Bs, By + readData(S,T)

9: /* Concept drift detection and correction */
10: Call ChageDetection /* Algorithm 2 */
11: if ChangeDetection = True then

12: /* Update prediction model */

13: /* DA for stream buffer */

14: W, Wy <= genProject Function(Bs, By, 8)
15: Lg, L; < genProjectMatrix(Bs, By, Wy, W)
16: M + buildModel(Lg, Yy)

17: /* Generate predictions */

18: Ui < getPrediction(M, Ly)

instances from target stream 7" (step 4, 5, 6 & line 17-18).
Details of our proposed method is as follows.

Initialization and Domain Adaptation

In our proposed framework, instances from source and
target streams are stored in B and B; respectively. Recall-
ing our problem setting, data in B, have true labels, while
data in B; come without true labels. The domain adapta-
tion method is indeed a optimization problem solved by
feature embedding (Shi et al. 2010). Also, for computa-
tional purposes, we design our approach in a way that buffer
size in both source and target streams are the same, which
means the numbers of data instances in processing window
for source and target streams are identical. Thus, given a
certain time ¢, data that we have are: source stream win-
dow matrix B, € RNm*™: source stream window labels
vector Y, € RNVl and; target stream window matrix
By € RNmX" 1In this case, the best projection strategy of L
and L, in the latent feature space would be the minimization
of following objective function:

0= inlil (Bs, L)+ £(By, Lt) + D (L, Ly) (1)

where ¢ (-, -) is a distance function that evaluates the differ-
ences between the original data and projected data. D (-, -)
is the co-regularizer that promotes the similarities between
the two projected domains (L and L;). 5 is a parameter that
determines how desirable the two projected data are similar.
The first two terms are expected to preserve the structure of
the original data as much as possible. Therefore, we define
the loss function £ (-, -) as the Frobenius norm, which can
also be expressed as a matrix trace norm ¢ (B, L) equals

| Bs — LWy %, and £ (By, L) equals || B; — L, W[5.

We factorize the original data into projections (L and L;)
by linear mapping functions (W and W;). Also, note that
here we are not applying the alternative definition such as
0(Bs, L) as || BsWs — LS||%, since this definition will al-
ways lead to a trivial solution Wy = 0 and Ly = 0, thus
B;W, = L, = 0 will always minimize the objective func-
tion. From Equation 1 the projected data should preserve the
structures of original data.

Furthermore, we define D (Ls, L;) as follows:

1 1
D(Ls, L) = ié(Bs, L)+ 56 (By, Ly) 2)

which is the mean value of cross-similarity between the
original data and projected data. Finally, the parameter (3
controls the trade-off of importance of semantic similar-
ity co-regularization by minimizing the differences between
D(Ls, Ly).

Combining Equation 1 and 2 together, we obtain the over-
all optimization objective function as follows:

0= HBS - stvsni7 + ||Bt - LtWtH?P

1 1 &)
+ 581Bs = LWl + 5B 1B — Wi

Notice here the projection itself will perform rotation and
scaling on the target matrix to minimize the difference. Since
L and L, are orthogonal matrices, B;FBS = 1. Also, we
are applying the cyclic permutation property of trace. Thus,
Equation 3 can be expanded by the representation of trace.

According to (Long, Yu, and Zhang 2008), setting par-
tial derivatives to zero would generate the optimal solu-
tion based on KTT conditions. Consequently, the projection
function for both source and target stream can be formulated
as:

2
W, = iLI B, +——L/!B,
2+ 2+ 8
5 0 4)
W,=—"—L'B,+—LB
t 2+,8 s t 2‘1’6 t t

After the steps described above, the optimal projection
for both source and target stream to the latent feature space
would be formed accordingly.

Classification Module

We start to train a classifier with a small set of data in-
stances from both S and 7', which are referred to as the ini-
tialization data. The new data representation is obtained by
using initialization data from B, and B; as follows:

L =pPw-t BY e B,)
LY =BPw;t BY eB,

As new instances arrive in .S or 7', the classifier is updated
if there is a drift to ensure that it represents the current con-
cepts. A new classification model is trained using data in B
and B, at that time. Concept drift detection and the updating
method used by MSDA will be discussed in the next subsec-
tion. MSDA predicts the class label of an incoming target
instance from the target stream after projecting the instance
into the new data format.

Algorithm 2 ChangeDetection: Change Detection

Require: Source instances B, = {B,}*=!, target instances
By = {B;}’=!, new instance z, initial mean discrep-
ancy Disc, the change parameter 7.

Ensure: True if drift is detected, else False.

: /* Instance is from source stream */

if z € S then ‘ ‘

BY LW « Y LY =1, N,
BN LN g et

ns =y Lo LYW

Go to line 16.

/* Instance is from target stream */

BN Vo) gy,

BY, LY « BUTY LTV — 1 N,

pr = - S LW

/* Calculate the mean discrepancy Disc; at time ¢: */

Discy = ||l — put]l>.

12: s = [nLisee

158Co

13: Return s > —In(7).

—_
A G AR A o

Change Detection Module (CDM)

Previous work (Chandra et al. 2016) of multistream clas-
sification uses prediction confidence to detect changes in
distribution between two different time windows. Due to
possible asynchronous concept drifts between source and
target streams, an ensemble of classifiers is maintained and
updated if a concept drift is detected in either of these
streams of data. Therefore, complex ensemble algorithms
may lead to very slow execution.

We adopt the Maximum Mean Discrepancy (MMD) as the
distance measure to compare different distributions. The dis-
tance between two distributions can be computed between
the sample means of the two domains in the k-dimensional
embeddings:

DiSC(LT, LTI)

1 I 1
= LOw-1 _ _—
N, 2 W -y

m . m .

J

2

L 6)
KW

2

Il
_

where Lp, L7/ are the set of projected data points in the
source and target windows.

We invoke a simple but efficient change detection method
by monitoring significant changes in B, and B;. Since data
continuously arrives in the source and target streams, the
MMD model in Equation needs to be updated also by up-
dating the mean of adapted data points in the two windows
respectively. The online updating process is given by:

LY = BIw
Lg]) — B£J+1)W;1

B ¢ B,

; (N
BY ¢ B,

Here, we let Discy to initialize the mean discrepancy.
Disc; at time t is updated online as new instances arrive in S
or T'. The difference between the distributions is determined

Table 2: Datasets

Data set | # features | # instances
USPS 256 10,000
MNIST | 780 60,000
VIDEO | 100 5,000
DVD 200 30,000
MUSIC | 300 30,000
SYNO1 | 100 10,000
SYNO2 | 200 20,000

by the log ration between MMD. Therefore, a concept drift
point is detected if it is more than a user-defined threshold
T, as follows.

S—n Discy (LY, LY)

= In e U 8
Disco(L0, L) ~ ®

Algorithm 2 demonstrates an online updating algorithm
for change point detection. If a new instance arrived in the
source stream, we update the window L, by eliminating the
oldest instance and storing the newest instance (line 1-6).
Then, new arrived data are projected into the new subspace,
and the mean of source instances s is updated as well in
current window. Otherwise, we update the target window L;
and target mean y; instead (line 9-13). At last, the mean dis-
crepancy of two streams and a change sore are calculated
(line 15, 16).

Complexity Analysis

In our proposed approach, an update model is trained
from source to target stream anytime when a concept drift
point is detected. Hence, the time complexity of classifica-
tion module is significant in determining the overall model
complexity. Within the classification model, the training pro-
cess, which is the updating model determines the complexity
of whole algorithm.

MSDA has three modules, Domain Adaptation (DA)
module, Change Point Detection (CDM) module, and clas-
sification module. The DA module learns projection matrix
W, W, respectively, and from the instances stored in the
source and target sliding window. Since it is a sequence of
matrix transformation, the processing time is O(kN,,). The
time complexity of CDM module is O(k). The time com-
plexity of classification depends on the learning algorithm
used as the base model. Therefore, MSDA has total time
complexity of O(kN,, + k) + f(k), where f(k) is the time
complexity for training a new classification model.

Experiment
Baseline Methods

To evaluate the effectiveness of our proposed our method
MSDA, which uses embedding based methods for domain
adaptation, we compare it with several state-of-the-art do-
main adaptation or online learning frameworks. Also, we
applied two different variations of our method, which are

Table 3: Comparison of performance

Error Rate OTL HeMap-S HeMap-L MSDA-S MSDA-L

USPS — MNIST 3231 £0.94 | 38.19+0.75 | 39.04 £ 0.68 | 28.72 + 0.56 | 29.96 & 0.64
MUSIC — DVD 3354 £0.69 | 36.06 = 0.51 | 35.85 £0.77 | 32.91 £ 0.49 | 31.64 = 0.57
VIDEO — MUSIC | 38.01 = 1.03 | 40.41 £0.65 | 39.72 +0.85 | 31.76 £ 0.72 | 32.02 + 0.75
VIDEO — DVD 35.88 £0.88 | 40.28 +0.52 | 40.09 £0.61 | 32.35+0.49 | 33.84 £+ 0.65
SYNOI — SYNO2 | 37.53 £1.37 | 41.83 £0.83 | 42.12 £ 1.06 | 33.50 + 0.97 | 35.47 +0.92

MSDA-SVM and MSDA-LR. These two methods are dif-
ferent in a way that classifiers applied are SVM and Logis-
tic Regression. The following paragraphs describe details of
baseline methods.

OTL (Zhao and Hoi 2010). Online Transfer Learning
(OTL) uses a co-regularized method to project target domain
data into the source domain. This method is applied in a su-
pervised manner, which means that data in source domain
are offline, while data in target domain are online. Further-
more, there is a strong assumption that features in source
stream are a subset of those in target stream.

HeMap (Shi et al. 2010). Heterogeneous Mapping
(HeMap) projects data in two domains with correspondence
onto a common latent space. This method is designed as a
batch training, which means both source and target data are
offline. Also, this method requires class labels in the target
dataset. We adapt HeMap into our problem by applying slid-
ing windows. Meanwhile, two classifiers, SVM and LR, are
also applied in this method as variations, which are referred
as HeMap-S and HeMap-L respectively.

Datasets

We use both synthetic and real-world datasets to evaluate
our methods. As Table 2 shows, the first five datasets are
publicly available, and the latter two synthetic datasets are
generated by MOA (Bifet et al. 2010).

USPS (Hull 1994) and MNIST (LeCun et al. 1998) con-
tain gray-scale images of hand-written digits collected from
different sources. In order to satisfy the concept drift as-
sumption in this paper, we shift the concept of positive and
negative classes in the middle of datasets. That is, in the first
half of both USPS and MNIST, labels 0-4 represent “-” and
labels 5-9 represent “+”, while in the second half class labels
3-7 mean “+” and the rest class labels mean “-”.

MUSIC, DVD, and VIDEO (Blitzer, Dredze, and Pereira
2007) are text datasets generated by Amazon reviews based
on product categories. Features are extracted from raw re-
view text by implementing word2vec model proposed by
Google (Mikolov et al. 2013). We label scores with ratings
greater than 3 is defined as“+”, and those smaller than 3 are
defined as “-”. Scores that equals to 3 is discarded due to
ambiguous polarity. Meanwhile, weighted average sentence
embedding (Arora, Liang, and Ma 2016) is applied to repre-
sent word vectors, which provide more weight to uncommon
words.

SYNO1, SYNO2 (Bifet et al. 2010) are synthetic datasets
that are generated by MOA framework. These datasets are
generated in a way that the number of features in SYNOI is
100 while that in SYNO2 is 200, so that our domain adapta-
tion assumption can be satisfied.

Experiment Setup

Our MSDA approach involves multiple parameters. We
use N, = 400 as our default setting in the experiment.
Meanwhile, 5 = 1, kK = 4, and 7 = 0.1 are selected to
conduct our initial experiment here. The sensitivity of pa-
rameters will be discussed later in this section.

Result Analysis
Table 3 shows the average prediction error % on the tar-

wrong

get stream 7 AT, where Ayrong is the total number of
instances identified incorrectly, and m is the number of in-
stances in the target stream. From this table, we can tell that
MSDA-S outperforms all other competing methods on al-
most every dataset,except MUSIC — DVD. The reason here
is because in other datasets information are transferred from
low-dimensional to high-dimensional feature space while
this dataset is reversed. Since the performance of the model
can not be simply reversed, our method works better when
adapting from small feature space to larger feature space.

For example, the error rate of OTA, HeMap-S and MSDA-
S on USPS — MNIST are 32.31%, 38.19% and 28.72% re-
spectively. We can see that our proposed method has better
performance by a significant margin compared to baseline
methods. The reason is that for OTL, the algorithm has a
strong assumption that features in the source data are a sub-
set of those in the target stream, which is not quite the case
here. Text dataset used in this paper, such as reviews for
VIDEO and DVD, would have overlapping features in terms
of data distributions. However, not all features in VIDEO
would exist in the DVD dataset in our settings. When it
comes to HeMap, it also has its own shortcomings. HeMap is
an offline method, which makes it not able to adapt the con-
cept drift assumption in our problem. In this dataset specif-
ically, the concept in the second half of data shifts from the
first half of data (described in datasets section). Since we ap-
plied periodic updates every 4000 instances for the HeMap
method, there is a delay on updating the model comparing
our proposed MSDA-S approach.

Sensitivity Analysis

The results of our proposed method are further analyzed
by tuning defined parameters N,,, 3, k, and 7. All exper-
iments are conducted on USPS — MNIST dataset. In this
section, we vary N, by setting it to {200, 400, 600, 800,
1000}, B to {0.5, 1, 1.5,2,2.5}, kto {2,4, 6,8, 10}, and 7
to {0.1,0.2, 0.3, 0.4, 0.5} respectively.

First, the parameter that controls window size (IV,,) is set
to different values, and results are shown regarding how they
affect MSDA approach in Figure 3. We can see that the aver-
age error decreases along with window size increases, while

80
—=— Error Rate
—a— Execution Time

F70

a
o

Error Rate
&
g
Execution Time

o
@
S
s
s

30

600 700 800 900 1000

Window Size

(@)

500

80
—=— Error Rate
—a— Execution Time

F70

a
o

Error Rate
O
g
Execution Time

o
@
°
s
s

r30

(©

Error Rate

Error Rate

80
—=— Error Rate
—a— Execution Time

k70

60

0.35 50

Execution Time

30

0.75 1.00 125 150 175 200 225 250

(b)

80
—=— Error Rate
—a— Execution Time

F70

60

F50

Execution Time

k30

Figure 3: Sensitivity Experiment Results of MSDA

the execution time increases with increasing window size.
This is close to our expectation, as we state that the execu-
tion time of MSDA depends on /V,,,. Based on this obser-
vation, we should choose a medium value so that both error
rate and execution time could be balanced.

Second, 5 determines the similarities between projected
domains from both source and target stream. From Figure 3,
we can tell that the error rate decreases significantly when
£ increases from 0.5 to 1. If 5 > 1, the decreasing trend
of error rate is becoming not significant. Also, we can see
from the figure that the execution time regarding different 3
remains similar in the experiment. Thus, we choose 8 = 1
as our recommended parameter here.

Third, considering the parameter that defines the dimen-
sion of latent feature space k. This parameter influence the
model in both embedding and classification. In other words,
this parameter determines how large the feature space is to
apply our classifiers. From Figure 3, we can see that the per-
formance of the model has improved marginally while the
execution time increases dramatically as k increases. Thus,
we need to choose as small k£ as possible, meanwhile we
need to make sure that performance doesn’t degrade. Thus,
we choose k& = 4 for our approach.

At last, we can see that for 7, which controls the thresh-
old for concept drift detection. In this case, the performance
of model doesn’t quite change when 7 varies. Therefore,

based on performance of execution time, we need to choose
a smaller 7. Hence, we select 7 = 0.1 in our model.

In all, sensitivity experiments indicate that MSDA is sen-
sitive to V,,, and k, while not quite sensitive to S and 7.

Conclusions

In this paper, a multistream classification framework that
incorporates domain adaptation techniques is proposed. Two
major challenges, namely heterogeneous domain and con-
cept drift, are addressed simultaneously in two data streams.
Our solution involves an embedding-based mapping ap-
proach for domain adaptation, and an online update mech-
anism using average mean discrepancy for concept drift
correction. More specifically, the mapping approach helps
to find a common latent space for both source and target
streams, which preserves the structure of data and maxi-
mizes the similarities between source and target data. Addi-
tionally, the prediction model is updated if a concept drift is
detected, which happens when a likelihood ratio is greater
than the user-defined threshold 7. Extensive experiments
with both real-world and synthetic data show that our ap-
proach has significantly better performance in terms of error
rate on various datasets, compared to existing state-of-the-
art solutions.

References

Arnold, A.; Nallapati, R.; and Cohen, W. W. 2007. A com-
parative study of methods for transductive transfer learning.
In Data Mining Workshops, 2007. ICDM Workshops 2007.
Seventh IEEE International Conference on, 77-82. IEEE.

Arora, S.; Liang, Y.; and Ma, T. 2016. A simple but tough-
to-beat baseline for sentence embeddings.

Ben-David, S.; Blitzer, J.; Crammer, K.; Kulesza, A.;
Pereira, F.; and Vaughan, J. W. 2010. A theory of learn-
ing from different domains. Machine Learning 79(1-2):151—
175.

Bifet, A., and Gavalda, R. 2007. Learning from time-
changing data with adaptive windowing. In Proceedings of
the Seventh SIAM International Conference on Data Mining,
April 26-28, 2007, Minneapolis, Minnesota, USA, 443—448.

Bifet, A.; Holmes, G.; Kirkby, R.; and Pfahringer, B. 2010.
Moa: Massive online analysis. Journal of Machine Learning
Research 11(May):1601-1604.

Blitzer, J.; Dredze, M.; and Pereira, F. 2007. Biographies,
bollywood, boom-boxes and blenders: Domain adaptation
for sentiment classification. In Proceedings of the 45th an-

nual meeting of the association of computational linguistics,
440-447.

Chandra, S.; Haque, A.; Khan, L.; and Aggarwal, C. 2016.
An adaptive framework for multistream classification. In
Proceedings of the 25th ACM International on Conference
on Information and Knowledge Management, 1181-1190.
ACM.

Chen, Y.-R., and Chen, H.-H. 2015. Opinion spam detection
in web forum: a real case study. In Proceedings of the 24th
International Conference on World Wide Web, 173—183. In-
ternational World Wide Web Conferences Steering Commit-
tee.

Gama, J.; Medas, P.; Castillo, G.; and Rodrigues, P. P. 2004.
Learning with drift detection. In Advances in Artificial In-
telligence - SBIA 2004, 17th Brazilian Symposium on Artifi-

cial Intelligence, Sdo Luis, Maranhdo, Brazil, September 29
- October 1, 2004, Proceedings, 286-295.

Haque, A.; Tao, H.; Chandra, S.; Liu, J.; and Khan, L. 2018.
A framework for multistream regression with direct den-
sity ratio estimation. In Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence, New Orleans,
Louisiana, USA, February 2-7.

Haque, A.; Khan, L.; and Baron, M. 2016. Sand: Semi-
supervised adaptive novel class detection and classification
over data stream. In AAAI 1652-1658.

Herlihy, M. 1993. A methodology for implementing highly
concurrent data objects. ACM Transactions on Program-
ming Languages and Systems (TOPLAS) 15(5):745-770.
Hou, B.-J.; Zhang, L.; and Zhou, Z.-H. 2017. Learning with
feature evolvable streams. In Advances in Neural Informa-
tion Processing Systems, 1417-14217.

Hull, J. J. 1994. A database for handwritten text recogni-
tion research. IEEE Transactions on pattern analysis and
machine intelligence 16(5):550-554.

LeCun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998.
Gradient-based learning applied to document recognition.
Proceedings of the IEEE 86(11):2278-2324.

Long, B.; Yu, P. S.; and Zhang, Z. 2008. A general model for
multiple view unsupervised learning. In Proceedings of the
2008 SIAM international conference on data mining, 822—
833. SIAM.

Mikolov, T.; Chen, K.; Corrado, G.; and Dean, J. 2013. Ef-
ficient estimation of word representations in vector space.
arXiv preprint arXiv:1301.3781.

Pan, S. J., and Yang, Q. 2010. A survey on transfer learn-
ing. IEEE Transactions on knowledge and data engineering
22(10):1345-1359.

Shi, X.; Liu, Q.; Fan, W.; Philip, S. Y.; and Zhu, R. 2010.
Transfer learning on heterogenous feature spaces via spec-
tral transformation. In Data Mining (ICDM), 2010 IEEE
10th International Conference on, 1049-1054. 1IEEE.

Zadrozny, B. 2004. Learning and evaluating classifiers un-
der sample selection bias. In Proceedings of the twenty-first
international conference on Machine learning, 114. ACM.

Zhao, P., and Hoi, S. C. 2010. Otl: A framework of online

transfer learning. In Proceedings of the 27th international
conference on machine learning (ICML-10), 1231-1238.

