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Why Research ?2?7?7? $ ‘

« Because | always was curious and enjoyed learning

« Because being creative and innovative is akin to being an
ARTIST of knowledge

* Research allows you to practice your art of knowledge !!!




Curiosity = Question Answering

v

 How could a system automatically find the answer to any

guestion?
« How could you build a system?
 How could you represent knowledge?
« What is intelligence?
 How do humans communicate?
« Why we understand each other?
« Why is natural language difficult?

« What did | learn about semantics after building successful

Q/A systems?




Textual Question Answering
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Problem complexity & ‘

Semantics is just one of the problems! But what kind of semantics do we need?
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Semantic Problems with EATSs ’

* The problem of assigning EATS | |esson#2 }

e E.g. "manner questions”:
o Example "How did Hitler die?”

* The problem of recognizing answer types/structures

e Should “manner of death” be considered an answer type?
o What other manner of event/action should be considered as answer types?

* The problem of recognizing EATS In texts

e Should we learn to extract "“manner” relations?
e What other types of relations should we consider?

e Is relation recognition sufficient for answering all types of questions? Is it
necessary?



EAT = Manner-of-death oy
v

In TREC evaluations several questions asked about manner of death:
o "How did Adolf Hitler die?”

 Solution:

* We considered “Manner-of-Death” as an answer type,
pointing to a variety of verbs and nominalizations encoded
In WordNet

« We developed text mining techniques for identifying such
iInformation based on lexico-semantic patterns from
WordNet

« Example:

« [kill #sensel (verb) — CAUSE — die #sensel (verb)]

» Source of the troponyms of the [kill #sensel (verb)] concept are candidates for
the MANNER-OF-DEATH hierarchy

* e.g., drown, poison, strangle, assassinate, shoot
o




Practical Hurdle \.‘,

Lesson #3 }

Semantic information for EATs needs to be recognize¢d by text mining techniques

e Not all MANNER-OF-DEATH concepts are lexicalized as verbs
— we set out to determine additional patterns that capture such cases
o Goal: (1) set of patterns
(2) dictionaries corresponding to such patterns
— well known IE technique: (IJCAI'99, Riloff&Jones)

,X{DIE } in ACCIDENﬂ seed: train, accident,

L lbe killed (ACCIDENT) car wreck

(X [DIE | {from|of} DISEASE seed: cancer

| be killed | (DISEASE) AIDS

(X [ DIE | [ after suffering ]MEDICAL seed: stroke,

i 1 f suffering of CONDITION | (ACCIDENT) complications
caused by diabetes

Results: more than100 patterns were discovered



How much information does the text wear on its sleeve? { ‘

By doing only:
¢ named entity recognition
¢+ semantic classification of the expected answer type (off-line taxonomy +

semantic info from WordNet)
¢ Text mining

:> 55% accuracy on factual trivia-like questions (TREC-8, Moldovan et al.)

- What else is needed?
Most questions cannot be processed successfully in this way, as

:> they do not have a simple, conceptual EAT
We need to consider additional forms of semantic knowledge

and semantic processing. LLesson 44 }
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AQU INAS — Answering QUestions using INference and
Advanced Semantics
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The driving rationale for our approach is that humans appear to have
limited need for factoid question answering, but rather much more
need to have systems that can deal with complex reasoning about

causes, effects and chains of hypotheses.




QA architecture based on semantic structures
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Applying Predicate-Argument Structures to QA & ‘

Predicate-arguments structures improve answer extraction!!!

_ _ Lesson #5
* Parsing Questions p

Q: What kind of materials were stolen from the Russian navy? V/

PAS(Q): What [Argl: kind of nuclear materials] were [Predicate:stolen]
[Arg2: from the Russian Navy]?

« Parsing Answers

A(Q): Russia’s Pacific Fleet has also fallen prey to nuclear theft; in 1/96,
approximately 7 kg of HEU was reportedly stolen from a naval base in
Sovetskaya Gavan.

PAS(A(Q)): [Arg1(P1redicate 1): Russia’s Pacific Fleet] has [ArgM-Dis(Predicate
1) also] [Predicate 1: fallen] [Argl(Predicate 1): prey to nuclear theft];
[ArgM-TMP(Predicate 2): in 1/96], [Arg1l(Predicate 2): approximately 7 kg of HEU]

was [ArgM-ADV(Predicate 2) reportedly] [Predicate 2: stolen] [Arg2(Predicate 2):
from a naval base] [Arg3(Predicate 2): in Sovetskawa Gavan]

* Result: exact answer= “approximately 7 kg of HEU”




Additional semantic resources: FrameNet

* Using FrameNet for QA
« Example: What stimulated India’s missile programs?

FRAME: Stimulate

Frame Element CIRCUMSTANCES: ANSWER (part 1)
Frame Element EXPERIENCER: India’s missile program
Frame Element STIMULUS: ANSWER (part 2)

1

FRAME: Subject_Stimulus

Frame Element CIRCUMSTANCES: ANSWER (part 3)
Frame Element COMPARISON SET: ANSWER (part 4)
Frame Element EXPERIENCER: India’s missile program
Frame Element PARAMETER: nuclear proliferation




FrameNet Overview E, ‘

« Produced by ICSI Berkeley [Baker et al.,1998] as a lexico-semantic
resource encoding a set of frames (schematic representations of
situations)

« Frames are characterized by:

« target words or lexical predicates whose meaning includes aspects of the
frame;

« frame elements (FES) which represent the semantic roles of the frame;

« examples of annotations performed on the British National Corpus for
instances of each target word.

« The project methodology was done on a frame-by-frame basis:
» choosing a semantic frame (e.g. Commerce)

« define the frame and its frame elements (e.g. BUYER, GOODS, SELLER,
MONEY)

« list the various lexical predicates which invoke the frame (buy, sell)
« finding example sentences of each predicate in a corpus
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BIG DATA | =g, |
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The ability to harvest the wealth of information contained in biomedical Big Data will advance our understanding for BD2K-Related Hackathons
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(NIH) launched the Big Data to Knowledge (BD2K) initiative in 2012.
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AUTOMATIC DISCOVERY AND PROCESSING OF
EEG COHORTS FROM CLINICAL RECORDS

This award supports software development for automated explanatory modeling of
complex healthcare data. The researchers develop a patient cohort retrieval system

to provide big mechanism modeling capability for analysis of electroencephalogram (EEG) data.

Big mechanisms have been defined as large explanatory models of complex systems with
many causal interactions. The project is centered on the aggregation of clinical knowledge

automatically discovered from EEG signals and EEG reports into a medical knowledge graph.

The software framework established by this project could be transformative for mining the wealth

of biomedical knowledge available from hospital medical records.

Research supported by the National Human Genome Research Institute of the
National Institutes of Health under award number 1U01HGO008468.
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Patient Cohort Retrieval:

Given a query modeling of the desired attributes of a patient sub-
population, return a ranked list of patients that match this criteria.

In large EMRSs:

« 95k de-identified clinical records resulting from 18k hospital
VISItS

« Example Query: Patients diagnosed with localized prostate
cancer and treated with robotic surgery.

In EEG Reports:
e 20k de-identified EEG reports

« Example Query: patients with occasional sharp
waves suggesting a potential for seizures
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Temporal Disease Modelling:

The medical signs, symptoms, diagnoses, treatments,
tests, and observations associated with a patient change
over time. Thus, automatically reasoning about patients
(e.qg. for patient cohorts) can be improved by modelling the
temporal aspect of the clinical picture and therapy.

Knowledge Discovery & Representation



Digital Age

BIG DATA —-»BIG KNOWLEDGE — BIG MECHANISMS




Thank you!!




