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Why Research ???? 

• Because I always was curious and enjoyed learning 

• Because being creative and innovative is akin to being an 

ARTIST of knowledge 

• Research allows you to practice your art of knowledge !!! 
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Curiosity = Question Answering 

• How could a system automatically find the answer to any 

question? 

• How could you build a system? 

• How could you represent knowledge? 

• What is intelligence? 

• How do humans communicate? 

• Why we understand each other? 

• Why is natural language difficult? 

• What did I learn about semantics after building successful 

Q/A systems? 
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Lesson #1 

 

Semantics is just one of the problems! But what kind of semantics do we need? 
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What 

played 

actress 
name 

Shine 

What 

BMW 

company 
produce 

TOP 

PERSON  LOCATION  DATE TIME  PRODUCT  NUMERICAL  MONEY  ORGANIZATION  MANNER REASON 

                                                                                            VALUE 

What is the name of the 

actress that played in Shine? 

What does the BMW company 

produce? 

PERSON PRODUCT 

PRODUCT PERSON 
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Semantic Problems with EATs 

• The problem of assigning EATs 
• E.g. “manner questions”:  

• Example “How did Hitler die?” 

 

• The problem of recognizing answer types/structures 
• Should “manner of death”  be considered an answer type? 

• What other manner of event/action should be considered as answer types? 

 

• The problem of recognizing EATs in texts 
• Should we learn to extract “manner” relations? 

• What other types of relations should we consider? 

• Is relation recognition sufficient for answering all types of questions? Is it 
necessary? 

Lesson #2 
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EAT = Manner-of-death 

In TREC evaluations several questions asked about manner of death: 

• “How did Adolf Hitler die?” 

 

 

• Solution: 

• We considered “Manner-of-Death” as an answer type, 
pointing to a variety of verbs and nominalizations encoded 
in WordNet 

• We developed text mining techniques for identifying such 
information based on lexico-semantic patterns from 
WordNet 

• Example: 

• [kill #sense1 (verb) – CAUSE  die #sense1 (verb)] 
• Source of the troponyms of the [kill #sense1 (verb)] concept are candidates for 

the MANNER-OF-DEATH hierarchy 

• e.g., drown, poison, strangle, assassinate, shoot 
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Practical Hurdle 

• Not all MANNER-OF-DEATH concepts are lexicalized as verbs 

     we set out to determine additional patterns that capture such cases 

• Goal: (1) set of patterns 

             (2) dictionaries corresponding to such patterns 

     well known IE technique: (IJCAI’99, Riloff&Jones) 

• Results: more than100 patterns were discovered 

X   DIE           in ACCIDENT                                          seed:   train, accident, 

     be killed                                                        (ACCIDENT)   car wreck 

X   DIE           {from|of} DISEASE                                  seed:  cancer 

     be killed                                                           (DISEASE)  AIDS 

X   DIE            after suffering  MEDICAL                     seed:  stroke, 

                       suffering of       CONDITION    (ACCIDENT)  complications 

                                                                                               caused by diabetes 

Lesson #3 

Semantic information for EATs needs to be recognized by text mining techniques 
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How much information does the text wear on its sleeve? 

 By doing only: 
named entity recognition 

semantic classification of the expected answer type (off-line taxonomy + 

semantic info from WordNet) 

Text mining 

55% accuracy on factual trivia-like questions (TREC-8, Moldovan et al.) 

What else is needed? 

Most questions cannot be processed successfully in this way, as 

they do not have a simple, conceptual EAT 

We need to consider additional forms of semantic knowledge 

and semantic processing. 

70 

Lesson #4 



 

Collaborative Research Project 
 between UTD,  

ICSI Berkeley and Stanford University 

 
 

  
 The driving rationale for our approach is that humans appear to have 

limited need for factoid question answering, but rather much more 
need to have systems that can deal with complex reasoning about 
causes, effects and chains of hypotheses. 

  

AQUINAS – Answering QUestions using INference and 

Advanced Semantics 
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QA architecture based on semantic structures 
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Applying Predicate-Argument Structures to QA 

• Parsing Questions 

 

 

 

• Parsing Answers 

 

 
 

 

 

 

 

• Result: exact answer= “approximately 7 kg of HEU” 

Q: What kind of materials were stolen from the Russian navy? 

PAS(Q): What [Arg1: kind of nuclear materials] were [Predicate:stolen]  
[Arg2: from the Russian Navy]?     

A(Q): Russia’s Pacific Fleet has also fallen prey to nuclear theft; in 1/96, 

approximately 7 kg of HEU was reportedly stolen from a naval base in 

Sovetskaya Gavan. 

PAS(A(Q)):  [Arg1(P1redicate 1): Russia’s Pacific Fleet] has [ArgM-Dis(Predicate 

1) also]  [Predicate 1: fallen] [Arg1(Predicate 1): prey to nuclear theft];  

[ArgM-TMP(Predicate 2): in 1/96], [Arg1(Predicate 2): approximately 7 kg of HEU] 

was [ArgM-ADV(Predicate 2) reportedly] [Predicate 2: stolen]  [Arg2(Predicate 2): 
from a naval base] [Arg3(Predicate 2): in Sovetskawa Gavan] 

Lesson #5 

Predicate-arguments structures improve answer extraction!!! 
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Additional semantic resources: FrameNet 

• Using FrameNet for QA  
• Example: What stimulated India’s missile programs? 

 
FRAME:  Stimulate 
 
Frame Element CIRCUMSTANCES: ANSWER (part 1) 
Frame Element EXPERIENCER: India’s missile program 
Frame Element STIMULUS: ANSWER (part 2) 

FRAME:  Subject_Stimulus 
 
Frame Element CIRCUMSTANCES: ANSWER (part 3) 
Frame Element COMPARISON SET: ANSWER (part 4) 
Frame Element EXPERIENCER: India’s missile program 
Frame Element PARAMETER: nuclear proliferation 
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FrameNet Overview 
 

• Produced by ICSI Berkeley [Baker et al.,1998] as a lexico-semantic 
resource encoding a set of frames (schematic representations of 
situations) 

 

• Frames are characterized by: 
• target words or lexical predicates whose meaning includes aspects of the 

frame; 

• frame elements (FEs) which represent the semantic roles of the frame; 

• examples of annotations performed on the British National Corpus for 
instances of each target word. 

 

• The project methodology was done on a frame-by-frame basis: 
• choosing a semantic frame (e.g. Commerce) 

• define the frame and its frame elements (e.g. BUYER, GOODS, SELLER, 
MONEY) 

• list the various lexical predicates which invoke the frame (buy, sell) 

• finding example sentences of each predicate in a corpus 

 



Shallow Semantic Parsing Based on 
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BIG DATA 
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Research supported by  the National Human Genome Research Institute of the 

National Institutes of Health under award number  1U01HG008468. 

 

AUTOMATIC DISCOVERY AND PROCESSING OF 

EEG COHORTS FROM CLINICAL RECORDS 
This award supports software development for automated explanatory modeling of  

complex healthcare data. The researchers develop a patient cohort retrieval system  

to provide big mechanism modeling capability for analysis of electroencephalogram (EEG) data.  

 

Big mechanisms have been defined as large explanatory models of complex systems with  

many causal interactions. The project is centered on the aggregation of clinical knowledge 

 automatically discovered from EEG signals and EEG reports into a medical knowledge graph.  

 

 The software framework established by this project could be transformative for mining the wealth  

of biomedical knowledge available from hospital medical records. 
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Patient Cohort Retrieval: 

Given a query modeling of the desired attributes of a patient sub-
population, return a ranked list of patients that match this criteria. 

 

In large EMRs: 

• 95k de-identified clinical records resulting from 18k hospital 
visits 

• Example Query: Patients diagnosed with localized prostate 
cancer and treated with robotic surgery. 

 

In EEG Reports:  

• 20k de-identified EEG reports 

• Example Query: patients with occasional sharp 
waves suggesting a potential for seizures 
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Electro-Enchephalography EEG 

Patient Cohort Retrieval System 
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Query: 
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Patient Cohort 
Query Results: 
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Temporal Disease Modelling: 

 

The medical signs, symptoms, diagnoses, treatments, 

tests, and observations associated with a patient change 

over time. Thus, automatically reasoning about patients 

(e.g. for patient cohorts) can be improved by modelling the 

temporal aspect of the clinical picture and therapy. 

 

Knowledge Discovery & Representation 
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Digital Age  

BIG DATA BIG KNOWLEDGE  BIG MECHANISMS  
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Thank you!! 


