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ABSTRACT 

Growing public interest in Virtual Reality (VR) has made hardware 

like VR headsets and 3D sensors commonplace, but the resource 

intensive  and tedious nature of developing interactive VR 

experiences continues to be a limiting factor for VR becoming 

mainstream. To this end, we propose a framework to convert input 

RGB-D scans taken from commodity RGB-D sensors into an 

interactive VR scene in a 3D environment in a few seconds. We use 

state-of-the-art 3D instance segmentation algorithms to extract 

object instances from the RGB-D scan. We then retrieve a matching 

CAD (Computer Aided Design) model using 3D shape embeddings 

from a common embedding space learnt using CAD models and 

RGB-D scan instances. We align retrieved CAD models to scan 

objects using a novel 7-DoF (Degrees of Freedom) pose estimation 

approach and replicate the structure of the scene using plane 

segmentation algorithms and recreate the scene in a Unity 

environment using the matched CAD models. We evaluate and 

compare our approach on key metrics, such as instance 

segmentation accuracy, object retrieval accuracy, CAD model 

alignment and total runtime, on a test set of over 300 scenes, taking 

an average of 1.8 seconds for the entire conversion across our test 

dataset. We also perform detailed runtime analysis on various 

aspects of our approach to understand potential limitations of 

existing and proposed algorithms, while comparing total runtime 

against existing works. 
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1  Introduction 

Recent public interest in Virtual Reality (VR) has been driven by a 

combination of commodity VR headsets like Occulus Quest 2, 

Valve Index, HTC Vive and popular VR games and experiences 

such as Beat Saber, VR Chat, Half-Life: Alyx, etc. 3D sensors 

(such as Microsoft Kinect and Intel Realsense) and devices 

utilizing 3D camera systems (like Apple’s recent iPad Pro and 

iPhone Pro) have also become commonplace. VR and Augmented 

Reality (AR) experiences are also used in various applications such 

as 3D virtual tours of Museums [2] and real estate [3], education, 

designing and prototyping of automobile [4], and even medical 

purposes like management of Phantom Pain from amputations 

[5][6]. There has also been significant interest in the development 

of large-scale VR experiences in the industry from different 

companies, Meta being one of the most prominent ones. 

Despite the current adoption of VR and AR systems, 

several challenges remain on its path to becoming mainstream. One 

of the challenges is associated with the development of VR 

experiences. 3D experiences such as VR and AR interactions 

typically require a team of experts to spend a significant amount of 

time and resources to develop. These requirements increase 

significantly if we consider tasks such as indoor 3D reconstruction, 

which is our primary focus in this article, where there are a large 

number of objects and the layout of the scene as well as the 

placement, orientation, color, and texture of the objects need to be 

matched to the real-world scene. Thus, partial, or complete 

automation of such tasks is important to make creation of VR 

experiences accessible. 

3D reconstruction techniques can be broadly classified 

into two types based on their output: dense 3D reconstruction and 

semantic reconstruction. There has been a significant amount of 

research in the scope of dense 3D reconstructions [1][10-18]. Early 

works such as KinectFusion [1][10] and StereoScan[11] introduced 

algorithms to create dense, accurate and smooth 3D surface 

reconstructions from RGB-D videos in real-time, while later works 

such as ElasticFusion [13] and BundleFusion [15] have improved 

upon various aspects of the process. While dense 3D reconstruction 

methods output a photorealistic output and are well-suited for 

certain VR experiences, there are some inherent issues with the 

approach. One of the primary issues with such dense 3D 

reconstruction methods is that missing data during capture can 

cause objects in the reconstruction to be incomplete. Due to the 

nature of RGB-D images, surfaces of objects not directly in sight 

of the sensor are not captured in the data. While this is partly 

mitigated by using an RGB-D video which allows capturing the 

scene from different perspectives to the blind spots, a significant 
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amount of data remains missing in the reconstruction due to the 

cluttered nature of indoor scenes, for example, surfaces of objects 

placed against a wall are not captured. Dense 3D reconstructions 

also tend to be heavy in terms of data and static, i.e., individual 

objects in the scene cannot be interacted with. While recent 

semantic segmentation methods can partly solve this issue, such 

reconstructions are surface-level reconstructions, and as such, yield 

hollow objects. These drawbacks make them not an ideal choice for 

any interactive VR experience.  

Semantic reconstruction techniques [22][23][24][25][30] 

overcome these issues by replacing the objects in the scene with 

semantically and geometrically similar CAD (Computer Aided 

Design) models, but they haven’t been explored as much owing to 

technological and computational limitations. Their outputs tend not 

to be as photorealistic compared to dense 3D reconstructions, 

although recent advancements in game engines, specifically 

improvements in global illumination techniques such as Ray 

Tracing, have brought them very close if not on par with dense 

reconstructions. Representing objects in the scene by individual 

CAD models allows the resulting VR environment to include 

details such as texture, material, and other physical characteristics 

of each object. This can be pivotal for VR experiences and 3D 

simulations where the physical characteristics of objects in the 

scene play an important role. 

There are various challenges associated with semantic 3D 

reconstruction, the primary ones being detecting objects in the 

scene, and retrieving and aligning CAD models corresponding to 

each object. Following recent advancements in efficient 3D 

convolutions [7] and the increase in computational power of GPUs, 

3D Convolutional Neural Networks (CNNs) have become more 

accessible, leading to significant improvements in the performance 

of 3D object detection and segmentation algorithms [19][20][21]. 

Recent works in semantic reconstruction [22][23][24] have made 

significant strides towards addressing challenges involved with 

model retrieval and alignment but show minimal improvements in 

terms of object segmentation as most of them do not leverage state-

of-the-art 3D object segmentation algorithms, bottlenecking the 

overall performance of such methods in some key metrics. 

Although there have been works pertaining to CAD model retrieval 

and alignment using a single RGB (2D) or RGB-D image 

[39][56][57][58], such methods tend to focus on a single object [56] 

or rely on inferred noisy depth data for reconstruction [39][57][58], 

leading to lower overall performance.  

1.1 Proposed Approach 

To address these challenges, we propose a framework to convert an 

input RGB-D scan into a VR scene. We utilize state-of-the-art 3D 

object segmentation algorithms to extract object instances from the 

scan, followed by 3D shape encoding-based model retrieval 

process to fetch matching CAD models for each object instance. To 

align the matched CAD models to object instances, we propose a 

novel 7-DoF (scale x, y, z, position x, y, z, and rotation along Z-

axis) pose estimation approach. Following this, we segment and 

replicate planar structural components to recreate the layout of the 

indoor scene and recreate the scene in VR using a 3D game engine. 

We evaluate our proposed approach on a test dataset of more than 

300 scenes, with the entire conversion taking an average of 1.8 

seconds across our test dataset, on key metrics while performing 

extensive runtime analysis to identify potential bottlenecks. 

Although there are prior works that output an alignment of CAD 

models, to our knowledge, there are none that convert an input 

RGB-D scan into a VR scene. Owing to our design decisions, our 

approach demonstrates notable improvements in performance over 

existing methods on key metrics while being similar in total 

runtime. 

2  Related Work 

There exists a rich line of research on 3D object reconstruction from 

diverse kinds of input data such as multi-view RGB images, fused 

RGB-D scans, and point clouds. Extending it further, prior works 

have looked at reconstructing entire scenes in an online fashion and 

real-time constraints, as seen in  KinectFusion [1][10], 

BundleFusion[15] and NeuralRecon [18]. However, most of the 

prior works focus on producing a mesh or TSDF output with pre-

defined quality constraints and rely on color information for 

accurate representation. CAD model-based reconstruction differs 

from the above as the geometry of the detected object plays a key 

role and the end goal also differs as CAD models allow for better 

user interaction with the environment, more freedom to the 

designer of a VR environment to edit and change the object’s 

parameters, while also not requiring post-processing for gaps in 

output due to noisy inputs. CAD model-based reconstructions are 

also different in the fact that they are volumetric reconstructions, as 

opposed to the mentioned methods, which are surface-level 

reconstructions and can completely miss surfaces that are not 

completely captured by the camera.  

Instance Segmentation and Object Detection. For CAD-based 

retrieval methods, the initial step involves separating out shapes of 

interest from the input scene by using some variation of an object 

detection and segmentation method as seen in Gupta et al. [25]. 

There has been an increasing focus on leveraging RGB-D data for 

the task of 3D instance and semantic segmentation with recent 

works using modified 3D convolutional neural networks with 

customized operators for this task. Since we use existing, pre-

trained models for this part of our framework, we only briefly 

discuss some of the more recent approaches working on point 

clouds. The unstructured nature of point clouds makes it difficult to 

directly adapt convolutional architectures but recent approaches 

like PointNet [19] tackle it via aggregating local neighborhood 

information for per-point feature extraction. Sparse convolution-

based approaches like MinkowskiNet [7] define efficient 

convolution kernels for dealing with point clouds for feature 

extraction. Instance segmentation methods on point clouds 

typically perform semantic segmentation and then perform a 

grouping operation to separate out the class-wise instances like 

seen in JSIS3D [20], PointGroup [26] and OccuSeg [27]. 

SoftGroup [21] tries to leverage the advantages of both proposal-

based and grouping-based methods in a two-stage pipeline 
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consisting of bottom-up grouping for proposal generation followed 

by top-down refinement. 

CAD Model Retrieval and Alignment. Once a desired object is 

segmented out from the input RGB-D scan, the core problem is 

aligning a CAD model from an existing dataset to the object. Initial 

machine learning approaches for aligning CAD models to 3D 

scenes have been studied both from a classical, hand-tuned features 

[28][29][30] perspective and deep learning-based methods [25]. 

Song et al. [28] use linear SVMs (Support Vector Machines) 

corresponding to each model in a CAD dataset and iteratively go 

over the scene via a sliding window approach. Each SVM classifier 

is evaluated on the window to find the best match model from the 

dataset. Li et al. [27] obtain shape descriptors and key points for 

both noisy scans and 3D CAD models, encoding their local and 

global geometric features for efficient matching. Gupta et al. [25] 

leverage CNNs to output probable poses for objects already 

segmented by an existing segmentation method. Using some 

refinement over the pose outputs for the segmented object, the 

closest matching CAD model is inserted into the scene. ASIST [30] 

differs from the previous method as it tries to have a single, unified 

pipeline. It considers the semantic labeling and CAD model’s 

retrieval and placement scene as a single optimization problem via 

an energy-based formulation. Additionally, it only considers point 

cloud inputs instead of RGB-D seen in previous works. 

Deep learning approaches have found favor in 

comparison to earlier models primarily due to their robustness and 

reducing the need for hand-crafted shape features. Features 

descriptors are usually then obtained from deep neural networks 

trained on point cloud [19][32] and volumetric [31] shape 

classification tasks or based on implicit shape representation 

[33][34]. 3DMatch [35] developed a Siamese neural network as a 

feature extractor for matching input scans to CAD models based on 

establishing correspondences using the detected features. 

Similarly, Scan2CAD [22] proposes a 3D CNN approach to target 

similar correspondences and address some issues with domain gap 

of real-world scans and CAD models. They also introduce an 

annotated dataset for CAD model retrieval and alignment based on 

ScanNet [36] and ShapeNet [37]. Dahnert et al. [24] proposed a 

joint embedding space between CAD models and scanned objects 

that is learned via a triplet loss formulation based on existing scan-

to-CAD model annotated datasets. SceneCAD [23] considers the 

layout reconstruction part of the overall problem where instead of 

independently assessing each object, a graph neural network is used 

to form connections between them to enforce consistency in the 

scene’s reconstruction. 

Other approaches have used a single RGB image of a 

scene to retrieve and align CAD models. Lim et al.[56] use an RGB 

image to estimate the relative pose between a provided CAD model 

and an object in the image. Huang et al. [58], Manni et al. [39], and 

Izadinia et al. [57] use an RGB image to perform semantic 3D 

reconstruction, relying on depth data inferred from deep learning 

models. As such predicted depth maps tend to be noisy and 

inaccurate, the algorithms tend to miss out on smaller 3D geometric 

details, resulting in errors in retrieval, positioning and alignment 

leading to the overall poor performance of the final algorithm. 

Virtual World Reconstruction. Some of the algorithmic ideas 

have been primarily used in applications pertaining to Virtual and 

Augmented Reality (VR/AR) where creating an environment from 

scratch might be time consuming. RealitySkins [38] tries to address 

this problem by dynamically generating the environment based on 

the input scan from a user’s head-mounted display (HMD). 

Snap2Cad [39] shows a system that utilizes the built-in RGB 

sensors on modern smartphones to reconstruct an object in AR via 

matching with CAD models for use in online multiplayer scenarios. 

VRFromX [40] also uses neural network-based methods for object 

retrieval and alignment with human-in-the-loop as a part of an 

interactive content creation tool. In a similar vein, TransforMR [41] 

is a mixed reality system for object substitution that leverages 

segmentation and accurate pose estimation for consistent 

replacement and use in character animation. 

3  ScanToVR Design 

The proposed framework aims to convert an input indoor RGB-D 

scan into a semantically and visually similar, interactable Unity 3D 

world. Figure 1 gives an overview of the working of the framework. 

To achieve this, we first replace objects in the RGB-D scan with 

CAD models. Contrary to dense 3D reconstructions such as 

[1][10][15][13], where the output is a photo-realistic, precise but 

static reconstruction of the input RGB-D scene, this method of 

replacing objects in the scene with CAD models allows the output 

to be interactable for VR experiences (since each CAD model can 

be manipulated independently in the VR scene). To replicate the 

layout of objects in the RGB-D scene, we estimate the 7-DoF pose 

of objects and use it to align CAD models to their corresponding 

object instances in the scene. Finally, we detect, segment, and 

reconstruct the structural components of the indoor scene, such as 

the floor, walls, etc. To summarize, given an input indoor RGB-D 

scan, our framework aims to: 

1. Identify and segment instances of objects of interest in the 

scan. 

2. For each instance, find and retrieve the closest matching CAD 

model, which in cases where there are no good matches, can 

be geometrically different to the instance. 

3. Find 7-DoF transformations to align matched CAD models to 

respective object instances. 

4. Generate a Unity VR scene that semantically resembles the 

input RGB-D scan using the matched CAD models. 

3.1 Input Data 

Figure 1: Workflow of the proposed approach 
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RGB-D is a widely used input modality to capture 3D data, with 

high-quality annotated indoor RGB-D datasets such as S3DIS [42], 

ScanNet [36], and SUN-RGB-D [43] available today. With 

growing interest and recent advances in 3D object detection, the 

number of annotated RGB-D datasets for tasks like 3D object 

segmentation, 3D semantic segmentation, etc., are also increasing. 

Two types of RGB-D data are widely available: RGB-D images and 

RGB-D scans. RGB-D images are similar to a 2D RGB image 

combined with depth data from a depth sensor. As such, they can 

have blind spots, i.e., missing depth data, due to occlusion from 

different objects in the scene. In addition, they have a restricted, 

single-perspective view of the scene. This is not ideal for 

reconstruction since objects with missing parts can be easily 

misidentified and the limited field of view would result in just a 

small part of the actual scene to be captured. RGB-D scans 

overcome this issue by combining several RGB-D images, either 

from an RGB-D video or individual RGB-D images taken from 

different viewpoints to cover for blind spots. As a result, RGB-D 

scans have better point density (and by extension capture finer 

details), capture complete objects more consistently, and capture 

more, if not all, of the indoor scene in a single scan. Due to these 

reasons, we use RGB-D scans as input to the proposed system. 

3.2 3D Object Detection and Segmentation 

In order to semantically reconstruct a given 3D scene, we first need 

to detect, and extract objects present in the input RGB-D scan. 

Although 2D object detection has matured significantly, the 

requirement of depth information to accurately place objects in the 

virtual 3D scene makes these algorithms non-ideal for 3D 

reconstruction. Despite the recent advances in methods to estimate 

depth in 2D images, they tend to be noisy and inaccurate [39][44] 

and are still a work in progress. 3D object detection and 

segmentation algorithms can overcome these issues as they directly 

work on 3D point clouds, and thus can provide accurate and precise 

depth information, but until recently, their computational 

requirements have been too high for widespread adoption. Due to 

recent breakthroughs in efficient 3D convolutions [7] and an 

increase in computational capacities of consumer grade GPUs, 

CNN-based 3D object detection and segmentation methods have 

made significant advances [21][20][45]. Recent works on 3D 

object detection and segmentation [7][21][19][32][20][21][45][46] 

can broadly be classified into bounding-box based methods (object 

detection algorithms) [7][21][19][32] and mask-based methods 

(semantic segmentation algorithms) [20][21][45][46]. Bounding 

box-based methods output a 3D bounding box for each object 

instance in the scene, while mask-based methods output a semantic 

and instance label for each point in the input point cloud. In indoor 

scenes, it is common to find objects in close proximity to one 

another. In such cases, a bounding box-based method can be 

imprecise for extracting points corresponding to a specific instance, 

since, in case of an overlap, the box can contain points from an 

adjacent object. These points can alter the geometric characteristics 

of the extracted object instance and cause objects to be 

misidentified into different classes. To avoid this problem, we opt 

for a mask-based method that outputs precise segmentation masks 

for each instance in the scene. In a segmentation mask, there can be 

only one instance and semantic label associated with each point 𝑃𝑖 

in the scene point cloud. This eliminates the possibilities of overlap 

between segmented point clouds of different objects instances, 

solving our earlier problem. 

3.3  Model Retrieval and alignment  

Since our goal is to output an interactable VR scene, we aim to 

replace objects in the scene with semantically and geometrically 

similar 3D object models while aligning the CAD model to the 

replaced object. To this end, we propose a pipeline that matches, 

retrieves, and estimates the pose of the matched CAD model 

relative to the corresponding object instance from the RGB-D scan. 

3.3.1 Model Retrieval. After extracting object instances from the 

RGB-D scene, our next challenge lies in fetching a CAD model that 

is semantically and geometrically similar to the object instance 

from our CAD model dataset. Previous works have explored 

different ways to address this challenge. Some early approaches 

have used template matching with hand crafted per-class templates 

[47]. More recent works have utilized large model datasets like 

ShapeNet [37] and ModelNet [48] while using 3D CNNs for their 

model retrieval tasks [22][24] using 3D shape vectors, while using 

a CNN to encode the 3D shape vectors. This ensures that the system 

can handle a very large number and wide variety of models for each 

semantic class while keeping the runtime computational costs low. 

3.3.2 7-DoF Pose Estimation After fetching matching CAD models 

for each object instance in the scene, we need to re-position and 

transform the models to align them with their corresponding object 

instances. For this, transformation parameters for scale, position 

and rotation need to be calculated for the CAD model relative to 

the object instance in the scene. Various approaches have been 

explored to address this challenge. Early approaches have used 2D 

template matching [47], ICP or a variant of ICP [30], while more 

recent works have made use of deep learning algorithms to predict 

transformation parameters using 3D data [49] [22] or between 2D 

images and 3D data [39]. Although deep learning methods are fast 

(with a GPU), they can be inconsistent and inaccurate. 

Deterministic 3D approaches, like ICP and its variants, are accurate 

but tend to be computationally expensive and often require tuning 

various parameters to get desired results. With this in mind, we 

propose a novel approach to estimate 7-DoF pose that is both fast 

and accurate (refer Section 4.4). 

3.3.3 Layout Reconstruction To output a complete VR scene, we 

aim to also reconstruct the structural components of the scene such 

as walls, floor, and ceiling. We use a deterministic plane detection 

algorithm utilizing Random sample consensus (RANSAC) to 

segment various planar structural components using plane 

detection methods and replicate these structures in VR using a 

pipeline similar to the one used for CAD model retrieval and pose 

estimation. 

3.4 VR Reconstruction 

After fetching CAD models corresponding to the object instances 

in the scene and replicating the primary structural components, our 

next step involves creating a VR world based on this information. 
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Among the wide variety of 3D game engines available today, Unity 

and Unreal Engine are widely used, and thus, have extensive 

support and documentation available. We chose Unity for our 

implementation, but with minor modifications, the framework can 

be made to work with Unreal Engine or most other game engines 

as well. 

To summarize our design choices for different parts of the 

system (overview show in Figure 1), we: 

1. Detect object instances in input RGB-D scans using a state-of-

the-art 3D instance segmentation model 

2. Retrieve closest matching CAD models using learned 3D 

shape encoding vectors 

3. Estimate the relative 7-DoF pose between the CAD model and 

object instance using 2D and 3D algorithms 

4. Detect and replicate planar structural components in the scene 

using RANSAC  

5. Construct a VR environment in Unity using retrieved CAD 

models, their corresponding pose estimations and the 

structural components of the indoor scene. 

4 Implementation 

4.1 Datasets 

Due to a growing interest in 3D object segmentation, the number of 

annotated indoor RGB-D datasets have significantly increased in 

recent years. Although there is an abundance of synthetic indoor 

segmentation datasets like SunCG [50], RoboTHOR [51], 

Structured3D [52] and Hypersim [53] owing to the semi-

autonomous nature of generating virtual scene annotations, point 

clouds generated by such datasets using model sensors tend to be 

much better in quality compared to RGB-D scans captured in the 

real world. This discrepancy can severely impact the performance 

of algorithms trained on such synthetic data, when testing on real-

world data. Due to the challenges associated with manual 

annotations, real-world indoor RGB-D datasets are limited, with 

Stanford 3D Indoor Scene Dataset [42], ScanNet [36] and SUN 

RGB-D [43] being some of the widely used datasets. Among these, 

ScanNet [36] is by far the largest dataset with 1513 scenes and has 

been used to evaluate various state-of-the-art 3D segmentation 

algorithms. We also found ScanNet data to be better than existing 

datasets in annotations and quality of reconstruction. Thus, it is the 

dataset we chose to evaluate our method on.  

Among CAD model datasets, the most widely used 

datasets for object classification and CAD model retrieval tasks are 

ModelNet [48] and ShapeNet Core [37]. Although annotations in 

ShapeNet are more information rich, the extra information doesn’t 

benefit our approach. As such, we chose to use ModelNet[48] for 

our implementation due to its significantly larger collection of 

models (over 150k models) resulting in a more varied collection of 

models for each semantic category. 

4.2 Instance Segmentation 

The introduction of efficient 3D convolutions has made training 3D 

deep learning algorithms more accessible, leading to a significant 

increase in research on this topic in recent years. Notable recent 

works on 3D instance segmentation include [21][20][54[26][46]. 

For our approach, we select the semantic categories common to 

both the RGB-D and CAD model datasets we are using. Further, 

we only focus on large object classes like furniture, as the general 

layout of a scene is primarily defined by such large objects. This 

also helps us output a consistent and higher quality reconstruction, 

as we’ve found smaller objects to introduce more errors in the 

system (refer Error! Reference source not found.). This narrows 

down our selected number of semantic categories to 8: bathtub, bed, 

bookshelf, chair, desk, sofa, table, and toilet.  

Based on the performance of existing 3D instance 

segmentation approaches on the selected classes, we opted to 

implement the algorithm proposed by Vu et al. [21]. This work 

builds upon the work by Chen et al. [46] by modifying and 

improving on the instance proposal pipeline. We keep the 

architecture proposed in the paper unchanged and train the network 

on top of the existing checkpoint from [46] with the reduced 

number of classes (8). The model is implemented using PyTorch, 

which is a Python based deep-learning framework, and trained on 

120k iterations using Adam optimizer with a learning rate of 0.04 

and voxel size of 2cm. The instance segmentation pipeline outputs 

a mask and a semantic label corresponding to each predicted 

instance in the scene. Figure 2 shows a qualitative comparison 

between ground truth annotations and the generated semantic 

segmentation mask for a test scene from ScanNet v2 dataset. Note 

that predicted segmentation is only shown for categories of interest, 

not for all the categories output by the algorithm.  

Used exactly as proposed in the original work, the 

algorithm often erroneously labels small cluster of points in the 

scene. While these small clusters don’t affect the overall mean 

average precision (a key performance metric for such algorithms) 

of the algorithm due to their relatively small size, they can severely 

impact our reconstruction, resulting in the final VR scene littered 

by random small objects around the scene. To filter out these noisy 

predictions, which were primarily caused by low confidence 

instances and instances with a small number of points, we add a 

threshold for confidence score (Tconf) and number of points in the 

instance (Tpoints). We evaluate the algorithm on different 

configurations of Tconf and Tpoints to quantify the effects of 

varying these parameters on the performance, and the results can 

be found in [refer table]. Based on our studies, we selected 

Tconf=0.5 and Tpoints=512 as the ideal configuration for our 

pipeline. 

 

 
Figure 2: Left to right: RGB-D scan data, ground truth 

semantic annotations, predicted semantic mask 
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4.3 Model Retrieval 

After we extract object instances, we find the closest matching 

CAD models for each of them. Note that we don’t use any 

thresholds to distinguish a match as good or bad, and in some 

instances, the closest CAD model to a given instance can have 

significant geometrical differences. For a set of 𝑚 extracted object 

instances 𝐼 = {𝐼0, 𝐼1, 𝐼2, 𝐼3, . . . 𝐼𝑚−1}, we find a set of matching CAD 

models 𝑂 =  {𝑂0, 𝑂1, 𝑂2, 𝑂3, . . . 𝑂𝑚−1}, such that 𝑂 ∈ 𝑂𝑑𝑠 , where 

𝑂𝑑𝑠  represents our 3D object dataset, and for 𝑥 ∈ [0, 𝑚) , 𝑂𝑥 

matches 𝐼𝑥 semantically and geometrically. To keep our retrieval 

process fast while being able to fetch from a large collection of 

models, we opt to utilize 3D shape embeddings with vector based 

nearest-neighbor search. Although hand-crafted 3D shape 

descriptors based on local geometric features have been used in 

previous works, recent advances in 3D CNNs have enabled training 

deep learning models for object classification which produce 3D 

embedding that outperform such hand-crafted features. Even for 

such methods, object retrieval poses a significant challenge as both 

clean and complete CAD models, and incomplete and noisy real-

world object instances, need to be mapped to a common embedding 

space. We evaluate semantic label assisted model-retrieval in 

contrast to purely encoding based retrieval. 

4.3.1 3D Shape Encoding. For generating 3D shape embeddings, 

we adapt the work by Choy et al.[7] The network is an 

implementation of the work by Pratt et al. [55] built on a versatile 

and efficient framework for 3D convolutions, Minkowski Engine, 

and performs close to state-of-the-art on object classification tasks. 

We modify the network by passing the embedding layer of the 

network through a max pooling layer followed by a sigmoid layer. 

The resulting 1024 length vector is then used as a 3D shape 

embedding vector. Since the network takes point clouds as input 

and CAD models are mesh files, we first convert them to point 

clouds by sampling 2048 points uniformly from the surface of the 

CAD models. The number of points is fixed to 2048 due to the 

requirement of the network’s architecture. Object instances with 

more points than 2048 are randomly down sampled, whereas those 

less than 2048 points are up sampled by duplication. The point 

clouds are normalized and their mean is shifted to origin (0,0,0). 

We pass the resulting point cloud through the network to get 

semantic predictions and encoding vectors. 

Training. Training the network solely on CAD models or on object 

instances yields poor results on the other dataset, while CAD 

models followed by training on object instances and vice versa 

results in the network’s performance on the prior dataset degrading 

significantly. To effectively learn a common embedding space for 

both CAD models and object instances, we employ a mixed 

training strategy where we train the network on both object 

instances and CAD models together. The results of these 

experiments are shown in Table 2. We train the network using a 

voxel size of 1cm, batch size of 32, for 10k steps, with the forward 

pass switching between samples from each dataset after each step. 

4.3.2 CAD Model Database. To make CAD model retrieval faster 

at runtime, we preemptively pass all the models in our CAD model 

dataset through our encoding network and add the vectors to a K-

Nearest Neighbor (KNN) based tree, which forms our CAD model 

database. We use cosine distance as the distance metric to measure 

similarity between vectors in the database. Cosine distance between 

two vectors A and B is defined as 

𝑐𝑜𝑠𝑖𝑛𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒  =  1 −
𝐴∙𝐵

‖𝐴‖‖𝐵‖
= 1 −

∑ 𝐴𝑖𝐵𝑖
𝑛
𝑖=1

√∑ 𝐴𝑖
2𝑛

𝑖=1 √∑ 𝐵𝑖
2𝑛

𝑖=1

 – (1) 

At runtime, an object instance is encoded into a vector and queried 

against the database, which returns the CAD model with the lowest 

cosine distance to the instance. Since there is no threshold distance 

set to distinguish a match as good or bad, in some instances, the 

closest CAD model to a given instance can be geometrically 

different. 

4.4 Pose Estimation 

To align matched CAD models to object instances, we need to 

estimate the relative pose of the CAD model with respect to the 

object instance. To this end, we propose a fast and accurate method 

to estimate the 7-DoF pose (position x, y, z, scale x, y, z, and 

rotation along the Z axis) of the CAD model relative to the object 

instance. We make the assumption that all objects in the scene are 

placed upright, i.e., they are only rotated along the Z-axis. Since 

our goal is to re-create the layout of a room or indoor scene with 

the object categories being large objects like furniture, which are 

predominantly placed in an upright position, this assumption works 

in most cases for our situation. In cases where the objects are not 

placed upright, the objects will still be placed in the correct position 

in the reconstruction but will be placed upright as the algorithm 

doesn’t account for rotation along X and Y axes. This can be easily 

corrected in the final output by manually rotating these objects 

along the required axes. 

To estimate the scale and position, we draw a 3D 

bounding box around the object instance. Since an axis-aligned 

bounding box can misrepresent the scale of the instance 

significantly unless it is aligned with all the axes, we utilize a 3D 

Oriented Bounding Box (OBB). 

4.4.1 3D Oriented bounding box calculation. Although there are 

different ways to estimate a 3D minimum-volume OBB around an 

object, accurate 3D methods tend to computationally expensive 

while other methods trade-off accuracy for being faster. For our 

approach, we utilize a hybrid 2.5D method to compute 3D OBB 

around an object. We project the object point cloud to the XY plane 

(top-down view) and draw a minimum area rectangle around the 

projection using a rotating caliper approach [10]. The 2D box is 

represented by: 

𝑚𝑖𝑛𝐴𝑟𝑒𝑎𝑅𝑒𝑐𝑡 = (𝑋center, 𝑌center, 𝑋extent, 𝑌extent, θ) – (2) 

where (𝑋center, 𝑌center)  are the coordinates for the center, 

(𝑋extent, 𝑌extent) are the dimensions of the rectangle in the XY 

plane, and θ is the angle of rotation of the rectangle along the Z-

axis. Due to our assumption of the rotation of the object being 

constrained to the Z-axis, the dimensions and center of this 

rectangle accurately represent the dimensions and center of the 

object in X and Y axes. We convert this 2D rectangle into a 3D 

OBB using the following equations to calculate the Z coordinates 

and yaw:  

𝑍𝑒𝑥𝑡𝑒𝑛𝑡 =  
𝑍𝑚𝑎𝑥−𝑍𝑚𝑖𝑛

2
 – (3) 
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𝑍𝑐𝑒𝑛𝑡𝑒𝑟 =  𝑍𝑚𝑖𝑛 + 𝑍𝑒𝑥𝑡𝑒𝑛𝑡 – (4) 

𝑦𝑎𝑤 =  θ – (5) 

where (𝑍𝑚𝑎𝑥 , 𝑍𝑚𝑖𝑛)  are the Z-axis bounds of the object point 

cloud. This yields us coordinates (𝑋center, 𝑌center, 𝑍𝑐𝑒𝑛𝑡𝑒𝑟) for the 

center and (𝑋extent, 𝑌extent, 𝑍𝑒𝑥𝑡𝑒𝑛𝑡) for the scale of the 3D OBB. 

Figure 3 shows OBBs calculated using the proposed approach for 

various point clouds corresponding to both CAD models (in black) 

and object instances from RGB-D scene (in red). The illustration 

demonstrates that our algorithm calculates accurate minimum-

volume OBBs for each point cloud. 

 
Figure 3: Calculated OBBs using our approach. The points in 

black (first row) are from CAD models, points in red (second 

row) are from segmented object instances from RGB-D scans. 

4.4.2 Scale and Position Calculation. The center of the 3D OBB is 

considered as the position of the object. Note that we avoid taking 

the mean of all points in the instance point cloud as the center since, 

depending on the geometric shape of the object and variation in 

density of the captured point cloud, it might not represent the true 

center of the instance. We calculate the relative 3D scale of the 

object instance with respect to the scale of the fetched CAD model 

using the following equation 

𝑠𝑐𝑎𝑙𝑒 = (
𝑆𝑥

𝑖

𝑆𝑥
𝑚 ,

𝑆𝑦
𝑖

𝑆𝑦
𝑚 ,

𝑆𝑧
𝑖

𝑆𝑧
𝑚) – (6) 

 

where, (𝑆𝑥
𝑖 , 𝑆𝑦

𝑖 , 𝑆𝑧
𝑖 ) are the dimensions of the oriented bounding box 

for the object instance and (𝑆𝑥
𝑚, 𝑆𝑦

𝑚, 𝑆𝑧
𝑚) are the dimensions of the 

oriented bounding box for the CAD model. 

4.4.3 Rotation estimation. Next, we apply the previously calculated 

position and scale transformations to the CAD model to align it to 

the object instance. To calculate the Z-axis rotation of the model 

with respect to the instance, we rotate the model around the Z-axis 

in steps (keeping the object instance static) and calculate Chamfer 

distance between the CAD model and object point clouds at each 

step. We select the best alignment angle as the one with the 

minimum Chamfer distance. The algorithm used is detailed in 

Algorithm 1. The iterations in Algorithm 1 are executed in parallel 

to improve runtime. In addition, we further minimize the amount of 

time taken by Chamfer distance calculations by uniformly down 

sampling the input point clouds to 512  points, which we found to 

have a good balance between low calculation time while not losing 

finer geometric details based on empirical studies. Figure 4 shows 

the results of applying our alignment algorithm for qualitative 

analysis. Each row demonstrates the process for a different CAD 

model and object instance pair. The first column containing black 

(CAD model), and red (object instance) point clouds shows the 

initial positions without any scaling or repositioning of the CAD 

model. The second column shows the CAD model point cloud 

rescaled and repositioned to match the instance. The last column 

shows the final point clouds after 7-DoF alignment. As shown, it 

demonstrates good performance on incomplete object instances as 

well (shown in the second row). 

 
Algorithm 1: Proposed algorithm to find best alignment angle 

 

4.5 Layout detection 
To recreate the structural layout of the indoor environment in the 

VR scene, we detect and estimate the orientation of different planar 

structural components in the scene. We use RANSAC to detect and 

segment these structures. Based on empirical study on parameters 

for RANSAC, for our case, we found minimum number of points 

of 10000, distance threshold of 10cm, and 10000 iterations to 

provide the best results. We follow this up with our pose estimation 

method (Section 4.3) to estimate the position, scale, and orientation 

of the extracted planes. Note that since there are no CAD models 

associated with structural components, we use a unit cube point 

cloud 𝑃𝑢 to find the relative pose instead. The components are then 

formed by deforming a unit cube model in Unity. 

 

 
Figure 4: Visualization of our 7-DoF alignment process. 

 

4.6 Unity Reconstruction  

Input: Model point cloud Pm, Instance point cloud Pi 

Output: alignment angle α 

Algorithm: 

For α1 ← 0 𝑡𝑜 360, 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑠 𝑜𝑓 30: 

 Pm_rot ← Rotate Pm by α1 

 Calculate and record Chamfer distance between 

Pm_rot and Pi 

α2  ← α1 with minimum Chamfer distance in the above loop 

For α3 ← α2 − 30 𝑡𝑜 α2 + 30, 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑠 𝑜𝑓 10: 

 Pm_rot ← Rotate Pm by α3 

 Calculate and record Chamfer distance between 

Pm_rot and Pi 

α4  ← α3 with minimum Chamfer distance in the above loop 

For α5 ← α4 − 5 𝑡𝑜 α4 + 5, 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑠 𝑜𝑓 2: 

 Pm_rot ← Rotate Pm by α5 

 Calculate and record Chamfer distance between 

Pm_rot and Pi 

α ← α5 with minimum Chamfer distance 
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The object-CAD associations and their corresponding 

transformation parameters for each input RGB-D scan are written 

to a JSON file which is parsed by Unity. Inside Unity, we load the 

CAD models (use a unit cube for structures) and apply 

transformation parameters and color the CAD models based on 

their corresponding object instances. Color for each object instance 

is determined by averaging the color values of all points in the 

instance point cloud (or points corresponding to the plane for 

structures). The result is a VR scene that semantically resembles 

the input RGB-D scan. Figure 5 shows an example VR scene 

produced (right) using an input RGB-D scan from ScanNet dataset 

(left).  

5  Results 

We evaluate our approach on various metrics while comparing 

with existing works, as detailed in the following sub-sections. The 

following evaluations are done on the test set of ScanNet 

(containing 315 scenes) using the entire ModelNet dataset as the 

model database and the results are averaged across all test scenes. 

5.1  Instance segmentation 

To evaluate the performance of the selected instance segmentation 

algorithm with varying confidence threshold (Tconf) and number 

of minimum points per instance (Tpoints), we compare voxel-wise 

precision, recall and F1 scores of the algorithm in Error! 

Reference source not found.. These results show that Tpoints has 

a larger effect on mAP than Tconf, especially beyond 

Tpoints=1024, but tuning Tconf also results in considerable 

improvement in performance. 

 
Figure 5: Visualization of a scene from ScanNet converted into 

a Unity scene. 

 

 
Figure 6: Evaluating the effect of changing Tconf with 

Tpoints=512 (left) and changing Tpoints with Tconf=0.5 (right) 

on performance 

In Table 1, we compare the network’s segmentation performance 

to the best model from Scan2CAD [22] on common categories, 

which is the most recent work on model retrieval and alignment 

utilizing and evaluating any form of instance segmentation. The 

applied approach outperforms [22] by 15% on average. 

Table 1: Comparison of voxel-wise F1 scores for object 

segmentation. 

 Bathtub bookshelf chair table sofa average 

Scan2CAD 

[22] 0.6 0.59 0.74 0.57 0.75 0.65 

Applied 

approach 

0.87 0.71 0.85 0.81 0.75 0.80 

 

5.2 Encoder performance 
We measure the performance of our model retrieval pipeline by 

comparing the semantic labels of the fetched CAD model to the 

ground truth instance annotation from our RGB-D scan dataset, 

ScanNet. To quantify this, we use a per-instance F1 score, which is 

defined as follows: 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  
2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

 

Table 2 shows the results of our retrieval pipeline on data from 

ScanNet and ModelNet. Note that the F1 scores here are per-

instance, not per voxel, i.e., a match is considered successful with 

the IoU is above 0.5 and the semantic label of the matched model 

matches that of the ground truth instance. The results show that 

although relatively low recall score on ScanNet instances brings 

down the F1 score, the network shows good performance over both 

datasets. This demonstrates the success of our mixed dataset 

training strategy for the encoder network. Weighted average (based 

on number of samples per class) of F1 scores shows that the 

network poor performance is on classes with low number of 

occurrences. 

 

5.3 CAD model retrieval performance 
In Table 3 we evaluate two retrieval approaches, one aided by 

semantic predictions from the instance segmentation network, and 

the other purely relying on embedding vectors for retrieval based 

on semantic per-instance F1 scores while comparing it to existing 
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works. Results indicate the approach aided by semantic labels 

significantly outperforms purely embedding based retrieval, 

hinting at further possible improvements to the training strategy or 

architecture of the encoder network, performing on par with 

existing approaches while handling more categories. 

Table 2: Performance of the shape encoder network on CAD 

dataset (ModelNet) and object instances from ScanNet. 

 ScanNet ModelNet 

Class 

Precisio

n Recall 

F1-

scor

e 

Precisio

n 

Recal

l 

F1-

scor

e 

bathtub 1 0.52 0.68 1 0.72 0.84 

bed 0.74 0.4 0.52 0.88 0.98 0.92 

bookshel

f 1 0.69 0.82 1 0.87 0.93 

chair 0.91 1 0.95 0.95 0.91 0.93 

desk 0.73 0.38 0.5 0.76 0.79 0.77 

sofa 0.88 0.29 0.44 0.89 1 0.94 

table 0.8 0.96 0.87 0.81 0.85 0.83 

toilet 0.92 0.98 0.95 0.96 0.96 0.96 

Balanced 

Average 0.8725 

0.652

5 0.72 0.91 0.88 0.89 

Weighte

d 

Average 0.88 0.88 0.87 0.9 0.9 0.9 

 

Table 3: Semantic (per-instance) F-1 scores for two 

configurations of the model retrieval pipeline compared to 

existing work. 

Method ASIST [30] 

Label-

assisted 

Encoding 

only 

bathtub - 1 0.68 

bed 0.96 0.97 0.52 

bookshelf - 0.8 0.82 

chair 0.96 0.99 0.95 

desk - 0.94 0.5 

table 0.91 0.94 0.44 

sofa 1 0.92 0.87 

toilet 1 1 0.95 

Average 0.96 0.95 0.72 

 

5.4 Alignment 
To quantify the performance of our alignment algorithm, we 

calculate the voxel-wise F1-scores between ground truth object 

instances and matched CAD models with a voxel size of 10 cm. 

The score can vary between 0 and 1, 0 indicating no common 

voxels between the instance and CAD model, and 1 indicating a 

perfect match. While this is not the ideal metric to quantify 

alignment, as object instances from scan data can still have missing 

parts, leading to a lower score despite perfect alignment, in general 

we found it to be a good representation of alignment. Table 4 shows 

the average voxel-wise F1 scores on a per-class basis. 

Table 4: Voxel-wise F1 scores between aligned CAD models 

and ground truth instances. 

Class  Voxel F1 score  

bathtub  0.87 

bed  0.89 

bookshelf  0.51 

chair  0.41 

desk  0.59 

sofa  0.63 

table  0.72 

toilet  0.39 

Average  0.63 

 

5.5 Runtime Analysis 
To evaluate the runtime of our framework, we measure time taken 

for various steps of the framework averaged across all scans in 

ScanNet. We run our pipeline on a system equipped with an Intel 

Core i7-9700K processor and a RTX 2070 GPU. Table 5 shows the 

individual runtimes of various algorithms involved. 

Table 5: Runtime analysis for various processes in the 

algorithm in milliseconds. 

Task Average Time taken (ms) 

 Instance segmentation 544.2 

3D model retrieval 1.2 

Shape encoding 13.6 

3D pose estimation 1187.3 

Unity reconstruction 70.6 

Total 1817.1 

The time taken by the encoding and retrieval algorithms don’t vary 

significantly as they only operate on a single instance at a time. 

Meanwhile, as shown in Figure 7 and Figure 8, the time taken by 

our instance segmentation and 3D pose estimation algorithms scale 

up with the number of instances. Note that the scale of number of 

instances is different for both graphs as we consider number of total 

ground truth objects for instance segmentation, but only instances 

of selected classes go through the pose estimation method. Our 

pose estimation algorithm is partially sequential (limited by the 

number of CPU threads), leading to the runtime scaling almost 

linearly with the number of instances in the scene and contributing 

most to the overall time taken. Note that more recent hardware can 

potentially result in lower runtimes. In Table 6 we compare the 

overall runtime of the proposed framework in different scenarios to 

recent works on CAD model retrieval and alignment. Across the 

ScanNet test dataset of 315 scenes, our framework takes about 1.8 

seconds to convert an input RGB-D scan into a Unity VR scene on 

average, which is comparable to the current state-of-the-art. Table 

6 shows a comparison with existing works for different number of 

instances. Note that the number of instances used by SceneCAD 

[23] (# objects 1, 5, 26) don’t exactly match with ours, [22] and 

[49], but we’ve aligned them to the nearest corresponding number 

in our evaluation. 
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Figure 7: A plot showing the runtimes (y-axis) versus number 

of instances (x-axis) of Instance segmentation algorithm. 

 
Figure 8: : A plot showing the runtimes (y-axis) versus number 

of instances (x-axis) of the 7-DoF pose estimation algorithm 

 

Table 6: Comparison of total runtime for varying number of 

instances, # instances for SceneCAD mentioned in parenthesis. 

Number of objects 7 16 20 

Scan2CAD [22] 288.6 565.86 740.3 

SceneCAD [23] 2 (5) - 2.6 (26) 

End-to-End [49] 0.62 1.11 2.6 

Our approach 1.14 1.98 2.58 

6  Discussions and Conclusion 

We present an approach to convert an RGB-D scan to a 3D Unity 

VR scene. The proposed method detects and segments objects in 

the RGB-D scene, retrieves semantically and geometrically similar 

CAD models, aligns the CAD models to object instances, replicates 

the layout and generates a VR scene in Unity, taking an average of 

1.8 seconds for the entire reconstruction across our test dataset. We 

evaluate the proposed approach on several key metrics on a dataset 

of over 300 scenes, while comparing it to existing works. Our 

approach leverages state-of-the-art instance segmentation 

architecture to output a more semantically accurate scene than 

existing algorithms while maintaining a similar runtime. The 

results demonstrate the effectiveness of our approach in 

reconstructing a VR scene from an RGB-D scan. The framework 

has several applications, including but not limited to, helping VR 

developers and designers quickly generate a base design to work on 

(especially for indoor replication tasks), modelling real-world 

indoor environments in 3D for simulations, or making development 

of VR games and experiences more accessible to smaller teams. 

The low total runtime of the algorithm, with further optimizations 

and improvements, is promising for real-time virtual applications 

like remote VR meetings in a common physical space.  

Despite the framework’s performance, closer 

examination of failure cases suggests that there are some methods 

to improve upon in our proposed approach. The retrieval process 

finds the closest matching CAD model, and without any checks, 

can find geometrically dissimilar matches. Thresholding based on 

cosine distance, or a human-in-the-loop approach can help in this 

regard. The retrieved CAD models sometimes contain significant 

differences in finer geometric details, suggesting that an improved 

retrieval pipeline, maybe using a shape encoder with better 

architecture or training strategy, can further improve performance. 

The relatively small number of classes of objects we can detect and 

replicate is a limitation, as this results in a considerable percentage 

of the total number of objects in the scene, especially smaller 

objects, being not replicated in the final VR scene. Improvements 

in instance segmentation and shape encoding algorithms can help 

in this regard. The overall runtime performance of our approach is 

primarily bottlenecked by the pose estimation approach and better 

optimizations to the algorithm can improve the runtime 

significantly. Although RANSAC is a proven approach for plane 

detection, it needs some parameter tuning based on the dataset and 

doesn’t yield ideal results in some scenarios, for example, it misses 

small wall sections or walls with large windows. In addition, layout 

detection using plane segmentation often yields to segments of 

walls disconnected to the floor in the reconstructed VR scene. Edge 

or corner-based layout detection methods could yield better results 

in this case.  

With this method, we take a step towards automating the 

replication of real-world scenes in VR and autonomous generation 

of VR environments, making generating a VR scene more 

accessible. Despite the promising applications of such methods and 

recent advances in 3D deep learning algorithms, there has been 

limited work done in this scope, and we hope there will be more 

interest in this field in the future. 
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