
ScanToVR: An RGB-D to VR Reconstruction Framework

Hiranya Garbha Kumar†
 The University of Texas at Dallas

 Richardson, Texas, USA

 hiranya@utdallas.edu

Ninad Arun Khargonkar
 The University of Texas at Dallas

 Richardson, Texas, USA

nxk180069@utdallas.edu

Balakrishnan Prabhakaran
 The University of Texas at Dallas

 Richardson, Texas, USA

bprabhakaran@utdallas.edu

ABSTRACT

Growing public interest in Virtual Reality (VR) has made hardware

like VR headsets and 3D sensors commonplace, but the resource

intensive and tedious nature of developing interactive VR

experiences continues to be a limiting factor for VR becoming

mainstream. To this end, we propose a framework to convert input

RGB-D scans taken from commodity RGB-D sensors into an

interactive VR scene in a 3D environment in a few seconds. We use

state-of-the-art 3D instance segmentation algorithms to extract

object instances from the RGB-D scan. We then retrieve a matching

CAD (Computer Aided Design) model using 3D shape embeddings

from a common embedding space learnt using CAD models and

RGB-D scan instances. We align retrieved CAD models to scan

objects using a novel 7-DoF (Degrees of Freedom) pose estimation

approach and replicate the structure of the scene using plane

segmentation algorithms and recreate the scene in a Unity

environment using the matched CAD models. We evaluate and

compare our approach on key metrics, such as instance

segmentation accuracy, object retrieval accuracy, CAD model

alignment and total runtime, on a test set of over 300 scenes, taking

an average of 1.8 seconds for the entire conversion across our test

dataset. We also perform detailed runtime analysis on various

aspects of our approach to understand potential limitations of

existing and proposed algorithms, while comparing total runtime

against existing works.

CCS CONCEPTS
• Computing methodologies~Artificial intelligence~Computer

vision~Computer vision problems~Reconstruction, Matching •

Computer graphics ~ Graphics systems and interfaces ~ Virtual

reality

KEYWORDS

Semantic reconstruction, CAD model retrieval, 3D pose

estimation, Virtual Reality

1 Introduction

Recent public interest in Virtual Reality (VR) has been driven by a

combination of commodity VR headsets like Occulus Quest 2,

Valve Index, HTC Vive and popular VR games and experiences

such as Beat Saber, VR Chat, Half-Life: Alyx, etc. 3D sensors

(such as Microsoft Kinect and Intel Realsense) and devices

utilizing 3D camera systems (like Apple’s recent iPad Pro and

iPhone Pro) have also become commonplace. VR and Augmented

Reality (AR) experiences are also used in various applications such

as 3D virtual tours of Museums [2] and real estate [3], education,

designing and prototyping of automobile [4], and even medical

purposes like management of Phantom Pain from amputations

[5][6]. There has also been significant interest in the development

of large-scale VR experiences in the industry from different

companies, Meta being one of the most prominent ones.

Despite the current adoption of VR and AR systems,

several challenges remain on its path to becoming mainstream. One

of the challenges is associated with the development of VR

experiences. 3D experiences such as VR and AR interactions

typically require a team of experts to spend a significant amount of

time and resources to develop. These requirements increase

significantly if we consider tasks such as indoor 3D reconstruction,

which is our primary focus in this article, where there are a large

number of objects and the layout of the scene as well as the

placement, orientation, color, and texture of the objects need to be

matched to the real-world scene. Thus, partial, or complete

automation of such tasks is important to make creation of VR

experiences accessible.

3D reconstruction techniques can be broadly classified

into two types based on their output: dense 3D reconstruction and

semantic reconstruction. There has been a significant amount of

research in the scope of dense 3D reconstructions [1][10-18]. Early

works such as KinectFusion [1][10] and StereoScan[11] introduced

algorithms to create dense, accurate and smooth 3D surface

reconstructions from RGB-D videos in real-time, while later works

such as ElasticFusion [13] and BundleFusion [15] have improved

upon various aspects of the process. While dense 3D reconstruction

methods output a photorealistic output and are well-suited for

certain VR experiences, there are some inherent issues with the

approach. One of the primary issues with such dense 3D

reconstruction methods is that missing data during capture can

cause objects in the reconstruction to be incomplete. Due to the

nature of RGB-D images, surfaces of objects not directly in sight

of the sensor are not captured in the data. While this is partly

mitigated by using an RGB-D video which allows capturing the

scene from different perspectives to the blind spots, a significant

∗Article Title Footnote needs to be captured as Title Note
†Author Footnote to be captured as Author Note

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. Copyrights for third-party components of this work must

be honored. For all other uses, contact the owner/author(s).

WOODSTOCK’18, June, 2018, El Paso, Texas USA

© 2018 Copyright held by the owner/author(s). 978-1-4503-0000-0/18/06...$15.00

https://doi.org/10.1145/1234567890

WOODSTOCK’18, June, 2018, El Paso, Texas USA F. Surname et al.

amount of data remains missing in the reconstruction due to the

cluttered nature of indoor scenes, for example, surfaces of objects

placed against a wall are not captured. Dense 3D reconstructions

also tend to be heavy in terms of data and static, i.e., individual

objects in the scene cannot be interacted with. While recent

semantic segmentation methods can partly solve this issue, such

reconstructions are surface-level reconstructions, and as such, yield

hollow objects. These drawbacks make them not an ideal choice for

any interactive VR experience.

Semantic reconstruction techniques [22][23][24][25][30]

overcome these issues by replacing the objects in the scene with

semantically and geometrically similar CAD (Computer Aided

Design) models, but they haven’t been explored as much owing to

technological and computational limitations. Their outputs tend not

to be as photorealistic compared to dense 3D reconstructions,

although recent advancements in game engines, specifically

improvements in global illumination techniques such as Ray

Tracing, have brought them very close if not on par with dense

reconstructions. Representing objects in the scene by individual

CAD models allows the resulting VR environment to include

details such as texture, material, and other physical characteristics

of each object. This can be pivotal for VR experiences and 3D

simulations where the physical characteristics of objects in the

scene play an important role.

There are various challenges associated with semantic 3D

reconstruction, the primary ones being detecting objects in the

scene, and retrieving and aligning CAD models corresponding to

each object. Following recent advancements in efficient 3D

convolutions [7] and the increase in computational power of GPUs,

3D Convolutional Neural Networks (CNNs) have become more

accessible, leading to significant improvements in the performance

of 3D object detection and segmentation algorithms [19][20][21].

Recent works in semantic reconstruction [22][23][24] have made

significant strides towards addressing challenges involved with

model retrieval and alignment but show minimal improvements in

terms of object segmentation as most of them do not leverage state-

of-the-art 3D object segmentation algorithms, bottlenecking the

overall performance of such methods in some key metrics.

Although there have been works pertaining to CAD model retrieval

and alignment using a single RGB (2D) or RGB-D image

[39][56][57][58], such methods tend to focus on a single object [56]

or rely on inferred noisy depth data for reconstruction [39][57][58],

leading to lower overall performance.

1.1 Proposed Approach

To address these challenges, we propose a framework to convert an

input RGB-D scan into a VR scene. We utilize state-of-the-art 3D

object segmentation algorithms to extract object instances from the

scan, followed by 3D shape encoding-based model retrieval

process to fetch matching CAD models for each object instance. To

align the matched CAD models to object instances, we propose a

novel 7-DoF (scale x, y, z, position x, y, z, and rotation along Z-

axis) pose estimation approach. Following this, we segment and

replicate planar structural components to recreate the layout of the

indoor scene and recreate the scene in VR using a 3D game engine.

We evaluate our proposed approach on a test dataset of more than

300 scenes, with the entire conversion taking an average of 1.8

seconds across our test dataset, on key metrics while performing

extensive runtime analysis to identify potential bottlenecks.

Although there are prior works that output an alignment of CAD

models, to our knowledge, there are none that convert an input

RGB-D scan into a VR scene. Owing to our design decisions, our

approach demonstrates notable improvements in performance over

existing methods on key metrics while being similar in total

runtime.

2 Related Work

There exists a rich line of research on 3D object reconstruction from

diverse kinds of input data such as multi-view RGB images, fused

RGB-D scans, and point clouds. Extending it further, prior works

have looked at reconstructing entire scenes in an online fashion and

real-time constraints, as seen in KinectFusion [1][10],

BundleFusion[15] and NeuralRecon [18]. However, most of the

prior works focus on producing a mesh or TSDF output with pre-

defined quality constraints and rely on color information for

accurate representation. CAD model-based reconstruction differs

from the above as the geometry of the detected object plays a key

role and the end goal also differs as CAD models allow for better

user interaction with the environment, more freedom to the

designer of a VR environment to edit and change the object’s

parameters, while also not requiring post-processing for gaps in

output due to noisy inputs. CAD model-based reconstructions are

also different in the fact that they are volumetric reconstructions, as

opposed to the mentioned methods, which are surface-level

reconstructions and can completely miss surfaces that are not

completely captured by the camera.

Instance Segmentation and Object Detection. For CAD-based

retrieval methods, the initial step involves separating out shapes of

interest from the input scene by using some variation of an object

detection and segmentation method as seen in Gupta et al. [25].

There has been an increasing focus on leveraging RGB-D data for

the task of 3D instance and semantic segmentation with recent

works using modified 3D convolutional neural networks with

customized operators for this task. Since we use existing, pre-

trained models for this part of our framework, we only briefly

discuss some of the more recent approaches working on point

clouds. The unstructured nature of point clouds makes it difficult to

directly adapt convolutional architectures but recent approaches

like PointNet [19] tackle it via aggregating local neighborhood

information for per-point feature extraction. Sparse convolution-

based approaches like MinkowskiNet [7] define efficient

convolution kernels for dealing with point clouds for feature

extraction. Instance segmentation methods on point clouds

typically perform semantic segmentation and then perform a

grouping operation to separate out the class-wise instances like

seen in JSIS3D [20], PointGroup [26] and OccuSeg [27].

SoftGroup [21] tries to leverage the advantages of both proposal-

based and grouping-based methods in a two-stage pipeline

Insert Your Title Here WOODSTOCK’18, June, 2018, El Paso, Texas USA

consisting of bottom-up grouping for proposal generation followed

by top-down refinement.

CAD Model Retrieval and Alignment. Once a desired object is

segmented out from the input RGB-D scan, the core problem is

aligning a CAD model from an existing dataset to the object. Initial

machine learning approaches for aligning CAD models to 3D

scenes have been studied both from a classical, hand-tuned features

[28][29][30] perspective and deep learning-based methods [25].

Song et al. [28] use linear SVMs (Support Vector Machines)

corresponding to each model in a CAD dataset and iteratively go

over the scene via a sliding window approach. Each SVM classifier

is evaluated on the window to find the best match model from the

dataset. Li et al. [27] obtain shape descriptors and key points for

both noisy scans and 3D CAD models, encoding their local and

global geometric features for efficient matching. Gupta et al. [25]

leverage CNNs to output probable poses for objects already

segmented by an existing segmentation method. Using some

refinement over the pose outputs for the segmented object, the

closest matching CAD model is inserted into the scene. ASIST [30]

differs from the previous method as it tries to have a single, unified

pipeline. It considers the semantic labeling and CAD model’s

retrieval and placement scene as a single optimization problem via

an energy-based formulation. Additionally, it only considers point

cloud inputs instead of RGB-D seen in previous works.

Deep learning approaches have found favor in

comparison to earlier models primarily due to their robustness and

reducing the need for hand-crafted shape features. Features

descriptors are usually then obtained from deep neural networks

trained on point cloud [19][32] and volumetric [31] shape

classification tasks or based on implicit shape representation

[33][34]. 3DMatch [35] developed a Siamese neural network as a

feature extractor for matching input scans to CAD models based on

establishing correspondences using the detected features.

Similarly, Scan2CAD [22] proposes a 3D CNN approach to target

similar correspondences and address some issues with domain gap

of real-world scans and CAD models. They also introduce an

annotated dataset for CAD model retrieval and alignment based on

ScanNet [36] and ShapeNet [37]. Dahnert et al. [24] proposed a

joint embedding space between CAD models and scanned objects

that is learned via a triplet loss formulation based on existing scan-

to-CAD model annotated datasets. SceneCAD [23] considers the

layout reconstruction part of the overall problem where instead of

independently assessing each object, a graph neural network is used

to form connections between them to enforce consistency in the

scene’s reconstruction.

Other approaches have used a single RGB image of a

scene to retrieve and align CAD models. Lim et al.[56] use an RGB

image to estimate the relative pose between a provided CAD model

and an object in the image. Huang et al. [58], Manni et al. [39], and

Izadinia et al. [57] use an RGB image to perform semantic 3D

reconstruction, relying on depth data inferred from deep learning

models. As such predicted depth maps tend to be noisy and

inaccurate, the algorithms tend to miss out on smaller 3D geometric

details, resulting in errors in retrieval, positioning and alignment

leading to the overall poor performance of the final algorithm.

Virtual World Reconstruction. Some of the algorithmic ideas

have been primarily used in applications pertaining to Virtual and

Augmented Reality (VR/AR) where creating an environment from

scratch might be time consuming. RealitySkins [38] tries to address

this problem by dynamically generating the environment based on

the input scan from a user’s head-mounted display (HMD).

Snap2Cad [39] shows a system that utilizes the built-in RGB

sensors on modern smartphones to reconstruct an object in AR via

matching with CAD models for use in online multiplayer scenarios.

VRFromX [40] also uses neural network-based methods for object

retrieval and alignment with human-in-the-loop as a part of an

interactive content creation tool. In a similar vein, TransforMR [41]

is a mixed reality system for object substitution that leverages

segmentation and accurate pose estimation for consistent

replacement and use in character animation.

3 ScanToVR Design

The proposed framework aims to convert an input indoor RGB-D

scan into a semantically and visually similar, interactable Unity 3D

world. Figure 1 gives an overview of the working of the framework.

To achieve this, we first replace objects in the RGB-D scan with

CAD models. Contrary to dense 3D reconstructions such as

[1][10][15][13], where the output is a photo-realistic, precise but

static reconstruction of the input RGB-D scene, this method of

replacing objects in the scene with CAD models allows the output

to be interactable for VR experiences (since each CAD model can

be manipulated independently in the VR scene). To replicate the

layout of objects in the RGB-D scene, we estimate the 7-DoF pose

of objects and use it to align CAD models to their corresponding

object instances in the scene. Finally, we detect, segment, and

reconstruct the structural components of the indoor scene, such as

the floor, walls, etc. To summarize, given an input indoor RGB-D

scan, our framework aims to:

1. Identify and segment instances of objects of interest in the

scan.

2. For each instance, find and retrieve the closest matching CAD

model, which in cases where there are no good matches, can

be geometrically different to the instance.

3. Find 7-DoF transformations to align matched CAD models to

respective object instances.

4. Generate a Unity VR scene that semantically resembles the

input RGB-D scan using the matched CAD models.

3.1 Input Data

Figure 1: Workflow of the proposed approach

WOODSTOCK’18, June, 2018, El Paso, Texas USA F. Surname et al.

RGB-D is a widely used input modality to capture 3D data, with

high-quality annotated indoor RGB-D datasets such as S3DIS [42],

ScanNet [36], and SUN-RGB-D [43] available today. With

growing interest and recent advances in 3D object detection, the

number of annotated RGB-D datasets for tasks like 3D object

segmentation, 3D semantic segmentation, etc., are also increasing.

Two types of RGB-D data are widely available: RGB-D images and

RGB-D scans. RGB-D images are similar to a 2D RGB image

combined with depth data from a depth sensor. As such, they can

have blind spots, i.e., missing depth data, due to occlusion from

different objects in the scene. In addition, they have a restricted,

single-perspective view of the scene. This is not ideal for

reconstruction since objects with missing parts can be easily

misidentified and the limited field of view would result in just a

small part of the actual scene to be captured. RGB-D scans

overcome this issue by combining several RGB-D images, either

from an RGB-D video or individual RGB-D images taken from

different viewpoints to cover for blind spots. As a result, RGB-D

scans have better point density (and by extension capture finer

details), capture complete objects more consistently, and capture

more, if not all, of the indoor scene in a single scan. Due to these

reasons, we use RGB-D scans as input to the proposed system.

3.2 3D Object Detection and Segmentation

In order to semantically reconstruct a given 3D scene, we first need

to detect, and extract objects present in the input RGB-D scan.

Although 2D object detection has matured significantly, the

requirement of depth information to accurately place objects in the

virtual 3D scene makes these algorithms non-ideal for 3D

reconstruction. Despite the recent advances in methods to estimate

depth in 2D images, they tend to be noisy and inaccurate [39][44]

and are still a work in progress. 3D object detection and

segmentation algorithms can overcome these issues as they directly

work on 3D point clouds, and thus can provide accurate and precise

depth information, but until recently, their computational

requirements have been too high for widespread adoption. Due to

recent breakthroughs in efficient 3D convolutions [7] and an

increase in computational capacities of consumer grade GPUs,

CNN-based 3D object detection and segmentation methods have

made significant advances [21][20][45]. Recent works on 3D

object detection and segmentation [7][21][19][32][20][21][45][46]

can broadly be classified into bounding-box based methods (object

detection algorithms) [7][21][19][32] and mask-based methods

(semantic segmentation algorithms) [20][21][45][46]. Bounding

box-based methods output a 3D bounding box for each object

instance in the scene, while mask-based methods output a semantic

and instance label for each point in the input point cloud. In indoor

scenes, it is common to find objects in close proximity to one

another. In such cases, a bounding box-based method can be

imprecise for extracting points corresponding to a specific instance,

since, in case of an overlap, the box can contain points from an

adjacent object. These points can alter the geometric characteristics

of the extracted object instance and cause objects to be

misidentified into different classes. To avoid this problem, we opt

for a mask-based method that outputs precise segmentation masks

for each instance in the scene. In a segmentation mask, there can be

only one instance and semantic label associated with each point 𝑃𝑖

in the scene point cloud. This eliminates the possibilities of overlap

between segmented point clouds of different objects instances,

solving our earlier problem.

3.3 Model Retrieval and alignment

Since our goal is to output an interactable VR scene, we aim to

replace objects in the scene with semantically and geometrically

similar 3D object models while aligning the CAD model to the

replaced object. To this end, we propose a pipeline that matches,

retrieves, and estimates the pose of the matched CAD model

relative to the corresponding object instance from the RGB-D scan.

3.3.1 Model Retrieval. After extracting object instances from the

RGB-D scene, our next challenge lies in fetching a CAD model that

is semantically and geometrically similar to the object instance

from our CAD model dataset. Previous works have explored

different ways to address this challenge. Some early approaches

have used template matching with hand crafted per-class templates

[47]. More recent works have utilized large model datasets like

ShapeNet [37] and ModelNet [48] while using 3D CNNs for their

model retrieval tasks [22][24] using 3D shape vectors, while using

a CNN to encode the 3D shape vectors. This ensures that the system

can handle a very large number and wide variety of models for each

semantic class while keeping the runtime computational costs low.

3.3.2 7-DoF Pose Estimation After fetching matching CAD models

for each object instance in the scene, we need to re-position and

transform the models to align them with their corresponding object

instances. For this, transformation parameters for scale, position

and rotation need to be calculated for the CAD model relative to

the object instance in the scene. Various approaches have been

explored to address this challenge. Early approaches have used 2D

template matching [47], ICP or a variant of ICP [30], while more

recent works have made use of deep learning algorithms to predict

transformation parameters using 3D data [49] [22] or between 2D

images and 3D data [39]. Although deep learning methods are fast

(with a GPU), they can be inconsistent and inaccurate.

Deterministic 3D approaches, like ICP and its variants, are accurate

but tend to be computationally expensive and often require tuning

various parameters to get desired results. With this in mind, we

propose a novel approach to estimate 7-DoF pose that is both fast

and accurate (refer Section 4.4).

3.3.3 Layout Reconstruction To output a complete VR scene, we

aim to also reconstruct the structural components of the scene such

as walls, floor, and ceiling. We use a deterministic plane detection

algorithm utilizing Random sample consensus (RANSAC) to

segment various planar structural components using plane

detection methods and replicate these structures in VR using a

pipeline similar to the one used for CAD model retrieval and pose

estimation.

3.4 VR Reconstruction

After fetching CAD models corresponding to the object instances

in the scene and replicating the primary structural components, our

next step involves creating a VR world based on this information.

Insert Your Title Here WOODSTOCK’18, June, 2018, El Paso, Texas USA

Among the wide variety of 3D game engines available today, Unity

and Unreal Engine are widely used, and thus, have extensive

support and documentation available. We chose Unity for our

implementation, but with minor modifications, the framework can

be made to work with Unreal Engine or most other game engines

as well.

To summarize our design choices for different parts of the

system (overview show in Figure 1), we:

1. Detect object instances in input RGB-D scans using a state-of-

the-art 3D instance segmentation model

2. Retrieve closest matching CAD models using learned 3D

shape encoding vectors

3. Estimate the relative 7-DoF pose between the CAD model and

object instance using 2D and 3D algorithms

4. Detect and replicate planar structural components in the scene

using RANSAC

5. Construct a VR environment in Unity using retrieved CAD

models, their corresponding pose estimations and the

structural components of the indoor scene.

4 Implementation

4.1 Datasets

Due to a growing interest in 3D object segmentation, the number of

annotated indoor RGB-D datasets have significantly increased in

recent years. Although there is an abundance of synthetic indoor

segmentation datasets like SunCG [50], RoboTHOR [51],

Structured3D [52] and Hypersim [53] owing to the semi-

autonomous nature of generating virtual scene annotations, point

clouds generated by such datasets using model sensors tend to be

much better in quality compared to RGB-D scans captured in the

real world. This discrepancy can severely impact the performance

of algorithms trained on such synthetic data, when testing on real-

world data. Due to the challenges associated with manual

annotations, real-world indoor RGB-D datasets are limited, with

Stanford 3D Indoor Scene Dataset [42], ScanNet [36] and SUN

RGB-D [43] being some of the widely used datasets. Among these,

ScanNet [36] is by far the largest dataset with 1513 scenes and has

been used to evaluate various state-of-the-art 3D segmentation

algorithms. We also found ScanNet data to be better than existing

datasets in annotations and quality of reconstruction. Thus, it is the

dataset we chose to evaluate our method on.

Among CAD model datasets, the most widely used

datasets for object classification and CAD model retrieval tasks are

ModelNet [48] and ShapeNet Core [37]. Although annotations in

ShapeNet are more information rich, the extra information doesn’t

benefit our approach. As such, we chose to use ModelNet[48] for

our implementation due to its significantly larger collection of

models (over 150k models) resulting in a more varied collection of

models for each semantic category.

4.2 Instance Segmentation

The introduction of efficient 3D convolutions has made training 3D

deep learning algorithms more accessible, leading to a significant

increase in research on this topic in recent years. Notable recent

works on 3D instance segmentation include [21][20][54[26][46].

For our approach, we select the semantic categories common to

both the RGB-D and CAD model datasets we are using. Further,

we only focus on large object classes like furniture, as the general

layout of a scene is primarily defined by such large objects. This

also helps us output a consistent and higher quality reconstruction,

as we’ve found smaller objects to introduce more errors in the

system (refer Error! Reference source not found.). This narrows

down our selected number of semantic categories to 8: bathtub, bed,

bookshelf, chair, desk, sofa, table, and toilet.

Based on the performance of existing 3D instance

segmentation approaches on the selected classes, we opted to

implement the algorithm proposed by Vu et al. [21]. This work

builds upon the work by Chen et al. [46] by modifying and

improving on the instance proposal pipeline. We keep the

architecture proposed in the paper unchanged and train the network

on top of the existing checkpoint from [46] with the reduced

number of classes (8). The model is implemented using PyTorch,

which is a Python based deep-learning framework, and trained on

120k iterations using Adam optimizer with a learning rate of 0.04

and voxel size of 2cm. The instance segmentation pipeline outputs

a mask and a semantic label corresponding to each predicted

instance in the scene. Figure 2 shows a qualitative comparison

between ground truth annotations and the generated semantic

segmentation mask for a test scene from ScanNet v2 dataset. Note

that predicted segmentation is only shown for categories of interest,

not for all the categories output by the algorithm.

Used exactly as proposed in the original work, the

algorithm often erroneously labels small cluster of points in the

scene. While these small clusters don’t affect the overall mean

average precision (a key performance metric for such algorithms)

of the algorithm due to their relatively small size, they can severely

impact our reconstruction, resulting in the final VR scene littered

by random small objects around the scene. To filter out these noisy

predictions, which were primarily caused by low confidence

instances and instances with a small number of points, we add a

threshold for confidence score (Tconf) and number of points in the

instance (Tpoints). We evaluate the algorithm on different

configurations of Tconf and Tpoints to quantify the effects of

varying these parameters on the performance, and the results can

be found in [refer table]. Based on our studies, we selected

Tconf=0.5 and Tpoints=512 as the ideal configuration for our

pipeline.

Figure 2: Left to right: RGB-D scan data, ground truth

semantic annotations, predicted semantic mask

WOODSTOCK’18, June, 2018, El Paso, Texas USA F. Surname et al.

4.3 Model Retrieval

After we extract object instances, we find the closest matching

CAD models for each of them. Note that we don’t use any

thresholds to distinguish a match as good or bad, and in some

instances, the closest CAD model to a given instance can have

significant geometrical differences. For a set of 𝑚 extracted object

instances 𝐼 = {𝐼0, 𝐼1, 𝐼2, 𝐼3, . . . 𝐼𝑚−1}, we find a set of matching CAD

models 𝑂 = {𝑂0, 𝑂1, 𝑂2, 𝑂3, . . . 𝑂𝑚−1}, such that 𝑂 ∈ 𝑂𝑑𝑠 , where

𝑂𝑑𝑠 represents our 3D object dataset, and for 𝑥 ∈ [0, 𝑚) , 𝑂𝑥

matches 𝐼𝑥 semantically and geometrically. To keep our retrieval

process fast while being able to fetch from a large collection of

models, we opt to utilize 3D shape embeddings with vector based

nearest-neighbor search. Although hand-crafted 3D shape

descriptors based on local geometric features have been used in

previous works, recent advances in 3D CNNs have enabled training

deep learning models for object classification which produce 3D

embedding that outperform such hand-crafted features. Even for

such methods, object retrieval poses a significant challenge as both

clean and complete CAD models, and incomplete and noisy real-

world object instances, need to be mapped to a common embedding

space. We evaluate semantic label assisted model-retrieval in

contrast to purely encoding based retrieval.

4.3.1 3D Shape Encoding. For generating 3D shape embeddings,

we adapt the work by Choy et al.[7] The network is an

implementation of the work by Pratt et al. [55] built on a versatile

and efficient framework for 3D convolutions, Minkowski Engine,

and performs close to state-of-the-art on object classification tasks.

We modify the network by passing the embedding layer of the

network through a max pooling layer followed by a sigmoid layer.

The resulting 1024 length vector is then used as a 3D shape

embedding vector. Since the network takes point clouds as input

and CAD models are mesh files, we first convert them to point

clouds by sampling 2048 points uniformly from the surface of the

CAD models. The number of points is fixed to 2048 due to the

requirement of the network’s architecture. Object instances with

more points than 2048 are randomly down sampled, whereas those

less than 2048 points are up sampled by duplication. The point

clouds are normalized and their mean is shifted to origin (0,0,0).

We pass the resulting point cloud through the network to get

semantic predictions and encoding vectors.

Training. Training the network solely on CAD models or on object

instances yields poor results on the other dataset, while CAD

models followed by training on object instances and vice versa

results in the network’s performance on the prior dataset degrading

significantly. To effectively learn a common embedding space for

both CAD models and object instances, we employ a mixed

training strategy where we train the network on both object

instances and CAD models together. The results of these

experiments are shown in Table 2. We train the network using a

voxel size of 1cm, batch size of 32, for 10k steps, with the forward

pass switching between samples from each dataset after each step.

4.3.2 CAD Model Database. To make CAD model retrieval faster

at runtime, we preemptively pass all the models in our CAD model

dataset through our encoding network and add the vectors to a K-

Nearest Neighbor (KNN) based tree, which forms our CAD model

database. We use cosine distance as the distance metric to measure

similarity between vectors in the database. Cosine distance between

two vectors A and B is defined as

𝑐𝑜𝑠𝑖𝑛𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 1 −
𝐴∙𝐵

‖𝐴‖‖𝐵‖
= 1 −

∑ 𝐴𝑖𝐵𝑖
𝑛
𝑖=1

√∑ 𝐴𝑖
2𝑛

𝑖=1 √∑ 𝐵𝑖
2𝑛

𝑖=1

 – (1)

At runtime, an object instance is encoded into a vector and queried

against the database, which returns the CAD model with the lowest

cosine distance to the instance. Since there is no threshold distance

set to distinguish a match as good or bad, in some instances, the

closest CAD model to a given instance can be geometrically

different.

4.4 Pose Estimation

To align matched CAD models to object instances, we need to

estimate the relative pose of the CAD model with respect to the

object instance. To this end, we propose a fast and accurate method

to estimate the 7-DoF pose (position x, y, z, scale x, y, z, and

rotation along the Z axis) of the CAD model relative to the object

instance. We make the assumption that all objects in the scene are

placed upright, i.e., they are only rotated along the Z-axis. Since

our goal is to re-create the layout of a room or indoor scene with

the object categories being large objects like furniture, which are

predominantly placed in an upright position, this assumption works

in most cases for our situation. In cases where the objects are not

placed upright, the objects will still be placed in the correct position

in the reconstruction but will be placed upright as the algorithm

doesn’t account for rotation along X and Y axes. This can be easily

corrected in the final output by manually rotating these objects

along the required axes.

To estimate the scale and position, we draw a 3D

bounding box around the object instance. Since an axis-aligned

bounding box can misrepresent the scale of the instance

significantly unless it is aligned with all the axes, we utilize a 3D

Oriented Bounding Box (OBB).

4.4.1 3D Oriented bounding box calculation. Although there are

different ways to estimate a 3D minimum-volume OBB around an

object, accurate 3D methods tend to computationally expensive

while other methods trade-off accuracy for being faster. For our

approach, we utilize a hybrid 2.5D method to compute 3D OBB

around an object. We project the object point cloud to the XY plane

(top-down view) and draw a minimum area rectangle around the

projection using a rotating caliper approach [10]. The 2D box is

represented by:

𝑚𝑖𝑛𝐴𝑟𝑒𝑎𝑅𝑒𝑐𝑡 = (𝑋center, 𝑌center, 𝑋extent, 𝑌extent, θ) – (2)

where (𝑋center, 𝑌center) are the coordinates for the center,

(𝑋extent, 𝑌extent) are the dimensions of the rectangle in the XY

plane, and θ is the angle of rotation of the rectangle along the Z-

axis. Due to our assumption of the rotation of the object being

constrained to the Z-axis, the dimensions and center of this

rectangle accurately represent the dimensions and center of the

object in X and Y axes. We convert this 2D rectangle into a 3D

OBB using the following equations to calculate the Z coordinates

and yaw:

𝑍𝑒𝑥𝑡𝑒𝑛𝑡 =
𝑍𝑚𝑎𝑥−𝑍𝑚𝑖𝑛

2
 – (3)

Insert Your Title Here WOODSTOCK’18, June, 2018, El Paso, Texas USA

𝑍𝑐𝑒𝑛𝑡𝑒𝑟 = 𝑍𝑚𝑖𝑛 + 𝑍𝑒𝑥𝑡𝑒𝑛𝑡 – (4)

𝑦𝑎𝑤 = θ – (5)

where (𝑍𝑚𝑎𝑥 , 𝑍𝑚𝑖𝑛) are the Z-axis bounds of the object point

cloud. This yields us coordinates (𝑋center, 𝑌center, 𝑍𝑐𝑒𝑛𝑡𝑒𝑟) for the

center and (𝑋extent, 𝑌extent, 𝑍𝑒𝑥𝑡𝑒𝑛𝑡) for the scale of the 3D OBB.

Figure 3 shows OBBs calculated using the proposed approach for

various point clouds corresponding to both CAD models (in black)

and object instances from RGB-D scene (in red). The illustration

demonstrates that our algorithm calculates accurate minimum-

volume OBBs for each point cloud.

Figure 3: Calculated OBBs using our approach. The points in

black (first row) are from CAD models, points in red (second

row) are from segmented object instances from RGB-D scans.

4.4.2 Scale and Position Calculation. The center of the 3D OBB is

considered as the position of the object. Note that we avoid taking

the mean of all points in the instance point cloud as the center since,

depending on the geometric shape of the object and variation in

density of the captured point cloud, it might not represent the true

center of the instance. We calculate the relative 3D scale of the

object instance with respect to the scale of the fetched CAD model

using the following equation

𝑠𝑐𝑎𝑙𝑒 = (
𝑆𝑥

𝑖

𝑆𝑥
𝑚 ,

𝑆𝑦
𝑖

𝑆𝑦
𝑚 ,

𝑆𝑧
𝑖

𝑆𝑧
𝑚) – (6)

where, (𝑆𝑥
𝑖 , 𝑆𝑦

𝑖 , 𝑆𝑧
𝑖) are the dimensions of the oriented bounding box

for the object instance and (𝑆𝑥
𝑚, 𝑆𝑦

𝑚, 𝑆𝑧
𝑚) are the dimensions of the

oriented bounding box for the CAD model.

4.4.3 Rotation estimation. Next, we apply the previously calculated

position and scale transformations to the CAD model to align it to

the object instance. To calculate the Z-axis rotation of the model

with respect to the instance, we rotate the model around the Z-axis

in steps (keeping the object instance static) and calculate Chamfer

distance between the CAD model and object point clouds at each

step. We select the best alignment angle as the one with the

minimum Chamfer distance. The algorithm used is detailed in

Algorithm 1. The iterations in Algorithm 1 are executed in parallel

to improve runtime. In addition, we further minimize the amount of

time taken by Chamfer distance calculations by uniformly down

sampling the input point clouds to 512 points, which we found to

have a good balance between low calculation time while not losing

finer geometric details based on empirical studies. Figure 4 shows

the results of applying our alignment algorithm for qualitative

analysis. Each row demonstrates the process for a different CAD

model and object instance pair. The first column containing black

(CAD model), and red (object instance) point clouds shows the

initial positions without any scaling or repositioning of the CAD

model. The second column shows the CAD model point cloud

rescaled and repositioned to match the instance. The last column

shows the final point clouds after 7-DoF alignment. As shown, it

demonstrates good performance on incomplete object instances as

well (shown in the second row).

Algorithm 1: Proposed algorithm to find best alignment angle

4.5 Layout detection
To recreate the structural layout of the indoor environment in the

VR scene, we detect and estimate the orientation of different planar

structural components in the scene. We use RANSAC to detect and

segment these structures. Based on empirical study on parameters

for RANSAC, for our case, we found minimum number of points

of 10000, distance threshold of 10cm, and 10000 iterations to

provide the best results. We follow this up with our pose estimation

method (Section 4.3) to estimate the position, scale, and orientation

of the extracted planes. Note that since there are no CAD models

associated with structural components, we use a unit cube point

cloud 𝑃𝑢 to find the relative pose instead. The components are then

formed by deforming a unit cube model in Unity.

Figure 4: Visualization of our 7-DoF alignment process.

4.6 Unity Reconstruction

Input: Model point cloud Pm, Instance point cloud Pi

Output: alignment angle α

Algorithm:

For α1 ← 0 𝑡𝑜 360, 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑠 𝑜𝑓 30:

 Pm_rot ← Rotate Pm by α1

 Calculate and record Chamfer distance between

Pm_rot and Pi

α2 ← α1 with minimum Chamfer distance in the above loop

For α3 ← α2 − 30 𝑡𝑜 α2 + 30, 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑠 𝑜𝑓 10:

 Pm_rot ← Rotate Pm by α3

 Calculate and record Chamfer distance between

Pm_rot and Pi

α4 ← α3 with minimum Chamfer distance in the above loop

For α5 ← α4 − 5 𝑡𝑜 α4 + 5, 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑠 𝑜𝑓 2:

 Pm_rot ← Rotate Pm by α5

 Calculate and record Chamfer distance between

Pm_rot and Pi

α ← α5 with minimum Chamfer distance

WOODSTOCK’18, June, 2018, El Paso, Texas USA F. Surname et al.

The object-CAD associations and their corresponding

transformation parameters for each input RGB-D scan are written

to a JSON file which is parsed by Unity. Inside Unity, we load the

CAD models (use a unit cube for structures) and apply

transformation parameters and color the CAD models based on

their corresponding object instances. Color for each object instance

is determined by averaging the color values of all points in the

instance point cloud (or points corresponding to the plane for

structures). The result is a VR scene that semantically resembles

the input RGB-D scan. Figure 5 shows an example VR scene

produced (right) using an input RGB-D scan from ScanNet dataset

(left).

5 Results

We evaluate our approach on various metrics while comparing

with existing works, as detailed in the following sub-sections. The

following evaluations are done on the test set of ScanNet

(containing 315 scenes) using the entire ModelNet dataset as the

model database and the results are averaged across all test scenes.

5.1 Instance segmentation

To evaluate the performance of the selected instance segmentation

algorithm with varying confidence threshold (Tconf) and number

of minimum points per instance (Tpoints), we compare voxel-wise

precision, recall and F1 scores of the algorithm in Error!

Reference source not found.. These results show that Tpoints has

a larger effect on mAP than Tconf, especially beyond

Tpoints=1024, but tuning Tconf also results in considerable

improvement in performance.

Figure 5: Visualization of a scene from ScanNet converted into

a Unity scene.

Figure 6: Evaluating the effect of changing Tconf with

Tpoints=512 (left) and changing Tpoints with Tconf=0.5 (right)

on performance

In Table 1, we compare the network’s segmentation performance

to the best model from Scan2CAD [22] on common categories,

which is the most recent work on model retrieval and alignment

utilizing and evaluating any form of instance segmentation. The

applied approach outperforms [22] by 15% on average.

Table 1: Comparison of voxel-wise F1 scores for object

segmentation.

 Bathtub bookshelf chair table sofa average

Scan2CAD

[22] 0.6 0.59 0.74 0.57 0.75 0.65

Applied

approach

0.87 0.71 0.85 0.81 0.75 0.80

5.2 Encoder performance
We measure the performance of our model retrieval pipeline by

comparing the semantic labels of the fetched CAD model to the

ground truth instance annotation from our RGB-D scan dataset,

ScanNet. To quantify this, we use a per-instance F1 score, which is

defined as follows:

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

Table 2 shows the results of our retrieval pipeline on data from

ScanNet and ModelNet. Note that the F1 scores here are per-

instance, not per voxel, i.e., a match is considered successful with

the IoU is above 0.5 and the semantic label of the matched model

matches that of the ground truth instance. The results show that

although relatively low recall score on ScanNet instances brings

down the F1 score, the network shows good performance over both

datasets. This demonstrates the success of our mixed dataset

training strategy for the encoder network. Weighted average (based

on number of samples per class) of F1 scores shows that the

network poor performance is on classes with low number of

occurrences.

5.3 CAD model retrieval performance
In Table 3 we evaluate two retrieval approaches, one aided by

semantic predictions from the instance segmentation network, and

the other purely relying on embedding vectors for retrieval based

on semantic per-instance F1 scores while comparing it to existing

Insert Your Title Here WOODSTOCK’18, June, 2018, El Paso, Texas USA

works. Results indicate the approach aided by semantic labels

significantly outperforms purely embedding based retrieval,

hinting at further possible improvements to the training strategy or

architecture of the encoder network, performing on par with

existing approaches while handling more categories.

Table 2: Performance of the shape encoder network on CAD

dataset (ModelNet) and object instances from ScanNet.

 ScanNet ModelNet

Class

Precisio

n Recall

F1-

scor

e

Precisio

n

Recal

l

F1-

scor

e

bathtub 1 0.52 0.68 1 0.72 0.84

bed 0.74 0.4 0.52 0.88 0.98 0.92

bookshel

f 1 0.69 0.82 1 0.87 0.93

chair 0.91 1 0.95 0.95 0.91 0.93

desk 0.73 0.38 0.5 0.76 0.79 0.77

sofa 0.88 0.29 0.44 0.89 1 0.94

table 0.8 0.96 0.87 0.81 0.85 0.83

toilet 0.92 0.98 0.95 0.96 0.96 0.96

Balanced

Average 0.8725

0.652

5 0.72 0.91 0.88 0.89

Weighte

d

Average 0.88 0.88 0.87 0.9 0.9 0.9

Table 3: Semantic (per-instance) F-1 scores for two

configurations of the model retrieval pipeline compared to

existing work.

Method ASIST [30]

Label-

assisted

Encoding

only

bathtub - 1 0.68

bed 0.96 0.97 0.52

bookshelf - 0.8 0.82

chair 0.96 0.99 0.95

desk - 0.94 0.5

table 0.91 0.94 0.44

sofa 1 0.92 0.87

toilet 1 1 0.95

Average 0.96 0.95 0.72

5.4 Alignment
To quantify the performance of our alignment algorithm, we

calculate the voxel-wise F1-scores between ground truth object

instances and matched CAD models with a voxel size of 10 cm.

The score can vary between 0 and 1, 0 indicating no common

voxels between the instance and CAD model, and 1 indicating a

perfect match. While this is not the ideal metric to quantify

alignment, as object instances from scan data can still have missing

parts, leading to a lower score despite perfect alignment, in general

we found it to be a good representation of alignment. Table 4 shows

the average voxel-wise F1 scores on a per-class basis.

Table 4: Voxel-wise F1 scores between aligned CAD models

and ground truth instances.

Class Voxel F1 score

bathtub 0.87

bed 0.89

bookshelf 0.51

chair 0.41

desk 0.59

sofa 0.63

table 0.72

toilet 0.39

Average 0.63

5.5 Runtime Analysis
To evaluate the runtime of our framework, we measure time taken

for various steps of the framework averaged across all scans in

ScanNet. We run our pipeline on a system equipped with an Intel

Core i7-9700K processor and a RTX 2070 GPU. Table 5 shows the

individual runtimes of various algorithms involved.

Table 5: Runtime analysis for various processes in the

algorithm in milliseconds.

Task Average Time taken (ms)

 Instance segmentation 544.2

3D model retrieval 1.2

Shape encoding 13.6

3D pose estimation 1187.3

Unity reconstruction 70.6

Total 1817.1

The time taken by the encoding and retrieval algorithms don’t vary

significantly as they only operate on a single instance at a time.

Meanwhile, as shown in Figure 7 and Figure 8, the time taken by

our instance segmentation and 3D pose estimation algorithms scale

up with the number of instances. Note that the scale of number of

instances is different for both graphs as we consider number of total

ground truth objects for instance segmentation, but only instances

of selected classes go through the pose estimation method. Our

pose estimation algorithm is partially sequential (limited by the

number of CPU threads), leading to the runtime scaling almost

linearly with the number of instances in the scene and contributing

most to the overall time taken. Note that more recent hardware can

potentially result in lower runtimes. In Table 6 we compare the

overall runtime of the proposed framework in different scenarios to

recent works on CAD model retrieval and alignment. Across the

ScanNet test dataset of 315 scenes, our framework takes about 1.8

seconds to convert an input RGB-D scan into a Unity VR scene on

average, which is comparable to the current state-of-the-art. Table

6 shows a comparison with existing works for different number of

instances. Note that the number of instances used by SceneCAD

[23] (# objects 1, 5, 26) don’t exactly match with ours, [22] and

[49], but we’ve aligned them to the nearest corresponding number

in our evaluation.

WOODSTOCK’18, June, 2018, El Paso, Texas USA F. Surname et al.

Figure 7: A plot showing the runtimes (y-axis) versus number

of instances (x-axis) of Instance segmentation algorithm.

Figure 8: : A plot showing the runtimes (y-axis) versus number

of instances (x-axis) of the 7-DoF pose estimation algorithm

Table 6: Comparison of total runtime for varying number of

instances, # instances for SceneCAD mentioned in parenthesis.

Number of objects 7 16 20

Scan2CAD [22] 288.6 565.86 740.3

SceneCAD [23] 2 (5) - 2.6 (26)

End-to-End [49] 0.62 1.11 2.6

Our approach 1.14 1.98 2.58

6 Discussions and Conclusion

We present an approach to convert an RGB-D scan to a 3D Unity

VR scene. The proposed method detects and segments objects in

the RGB-D scene, retrieves semantically and geometrically similar

CAD models, aligns the CAD models to object instances, replicates

the layout and generates a VR scene in Unity, taking an average of

1.8 seconds for the entire reconstruction across our test dataset. We

evaluate the proposed approach on several key metrics on a dataset

of over 300 scenes, while comparing it to existing works. Our

approach leverages state-of-the-art instance segmentation

architecture to output a more semantically accurate scene than

existing algorithms while maintaining a similar runtime. The

results demonstrate the effectiveness of our approach in

reconstructing a VR scene from an RGB-D scan. The framework

has several applications, including but not limited to, helping VR

developers and designers quickly generate a base design to work on

(especially for indoor replication tasks), modelling real-world

indoor environments in 3D for simulations, or making development

of VR games and experiences more accessible to smaller teams.

The low total runtime of the algorithm, with further optimizations

and improvements, is promising for real-time virtual applications

like remote VR meetings in a common physical space.

Despite the framework’s performance, closer

examination of failure cases suggests that there are some methods

to improve upon in our proposed approach. The retrieval process

finds the closest matching CAD model, and without any checks,

can find geometrically dissimilar matches. Thresholding based on

cosine distance, or a human-in-the-loop approach can help in this

regard. The retrieved CAD models sometimes contain significant

differences in finer geometric details, suggesting that an improved

retrieval pipeline, maybe using a shape encoder with better

architecture or training strategy, can further improve performance.

The relatively small number of classes of objects we can detect and

replicate is a limitation, as this results in a considerable percentage

of the total number of objects in the scene, especially smaller

objects, being not replicated in the final VR scene. Improvements

in instance segmentation and shape encoding algorithms can help

in this regard. The overall runtime performance of our approach is

primarily bottlenecked by the pose estimation approach and better

optimizations to the algorithm can improve the runtime

significantly. Although RANSAC is a proven approach for plane

detection, it needs some parameter tuning based on the dataset and

doesn’t yield ideal results in some scenarios, for example, it misses

small wall sections or walls with large windows. In addition, layout

detection using plane segmentation often yields to segments of

walls disconnected to the floor in the reconstructed VR scene. Edge

or corner-based layout detection methods could yield better results

in this case.

With this method, we take a step towards automating the

replication of real-world scenes in VR and autonomous generation

of VR environments, making generating a VR scene more

accessible. Despite the promising applications of such methods and

recent advances in 3D deep learning algorithms, there has been

limited work done in this scope, and we hope there will be more

interest in this field in the future.

REFERENCES

[1] Newcombe, Richard A., et al. ‘KinectFusion: Real-Time

Dense Surface Mapping and Tracking’. 2011 10th IEEE

International Symposium on Mixed and Augmented Reality,

IEEE, 2011, https://doi.org10.1109/ismar.2011.6162880.

[2] https://www.louvre.fr/en/online-tours

[3] https://home3ds.com/3d-scan-home/

[4] https://www.bmw.com/en/events/nextgen/global-

collaboration.html

[5] Annaswamy, Thiru M., et al. ‘Clinical Feasibility and

Preliminary Outcomes of a Novel Mixed Reality System to

Manage Phantom Pain: A Pilot Study’. Pilot and Feasibility

Studies, vol. 8, no. 1, Springer Science and Business Media

https://doi.org10.1109/ismar.2011.6162880
https://www.louvre.fr/en/online-tours
https://home3ds.com/3d-scan-home/
https://www.bmw.com/en/events/nextgen/global-collaboration.html
https://www.bmw.com/en/events/nextgen/global-collaboration.html

Insert Your Title Here WOODSTOCK’18, June, 2018, El Paso, Texas USA

LLC, Oct. 2022, p. 232, https://doi.org10.1186/s40814-022-

01187-w.

[6] Sano, Yuko, et al. ‘Reliability of Phantom Pain Relief in

Neurorehabilitation Using a Multimodal Virtual Reality

System’. 2015 37th Annual International Conference of the

IEEE Engineering in Medicine and Biology Society (EMBC),

IEEE, 2015, https://doi.org10.1109/embc.2015.7318897.

[7] Choy, Christopher, Junyoung Gwak, et al. ‘4D Spatio-

Temporal ConvNets: Minkowski Convolutional Neural

Networks’. 2019 IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR), IEEE, 2019,

https://doi.org10.1109/cvpr.2019.00319.

[8] Works Cited

[9] Choy, Christopher, Junha Lee, et al. ‘High-Dimensional

Convolutional Networks for Geometric Pattern Recognition’.

2020 IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), IEEE, 2020,

https://doi.org10.1109/cvpr42600.2020.01124.

[10] Izadi, Shahram, et al. ‘KinectFusion: Real-Time 3D

Reconstruction and Interaction Using a Moving Depth

Camera’. Proceedings of the 24th Annual ACM Symposium

on User Interface Software and Technology, 2011, pp. 559–

568.

[11] Geiger, Andreas, et al. ‘StereoScan: Dense 3d Reconstruction

in Real-Time’. 2011 IEEE Intelligent Vehicles Symposium

(IV), IEEE, 2011, https://doi.org10.1109/ivs.2011.5940405.

[12] Nießner, Matthias, et al. ‘Real-Time 3D Reconstruction at

Scale Using Voxel Hashing’. ACM Transactions on Graphics,

vol. 32, no. 6, Association for Computing Machinery (ACM),

Nov. 2013, pp. 1–11,

https://doi.org10.1145/2508363.2508374.

[13] Whelan, Thomas, et al. ‘ElasticFusion: Dense SLAM without

A Pose Graph’. Robotics: Science and Systems XI, Robotics:

Science and Systems Foundation, 2015,

https://doi.org10.15607/rss.2015.xi.001.

[14] Choi, Sungjoon, et al. ‘Robust Reconstruction of Indoor

Scenes’. 2015 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), IEEE, 2015,

https://doi.org10.1109/cvpr.2015.7299195.

[15] Dai, Angela, et al. ‘Bundlefusion: Real-Time Globally

Consistent 3d Reconstruction Using on-the-Fly Surface

Reintegration’. ACM Transactions on Graphics (ToG), vol.

36, no. 4, 2017.

[16] Han, Lei, et al. ‘Real-Time Globally Consistent Dense 3D

Reconstruction with Online Texturing’. IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 44, no. 3,

Institute of Electrical and Electronics Engineers (IEEE), Mar.

2022, pp. 1519–1533,

https://doi.org10.1109/TPAMI.2020.3021023.

[17] Xu, Yabin, et al. ‘HRBF-Fusion: Accurate 3D Reconstruction

from RGB-D Data Using on-the-Fly Implicits’. ACM

Transactions on Graphics, vol. 41, no. 3, Association for

Computing Machinery (ACM), June 2022, pp. 1–19,

https://doi.org10.1145/3516521.

[18] Sun, Jiaming, et al. ‘NeuralRecon: Real-Time Coherent 3D

Reconstruction from Monocular Video’. ArXiv [Cs.CV], 1

Apr. 2021, http://arxiv.org/abs/2104.00681. arXiv.

[19] Qi, Charles R., et al. ‘PointNet: Deep Learning on Point Sets

for 3D Classification and Segmentation’. ArXiv [Cs.CV], 2

Dec. 2016, http://arxiv.org/abs/1612.00593. arXiv.

[20] Pham, Quang-Hieu, Thanh Nguyen, Binh-Son Hua, Gemma

Roig, and Sai-Kit Yeung. "JSIS3D: Joint semantic-instance

segmentation of 3D point clouds with multi-task pointwise

networks and multi-value conditional random fields." In

Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pp. 8827-8836. 2019.

[21] Vu, Thang, et al. ‘Scalable SoftGroup for 3D Instance

Segmentation on Point Clouds’. ArXiv [Cs.CV], 17 Sept.

2022, http://arxiv.org/abs/2209.08263. arXiv.

[22] Avetisyan, Armen, Manuel Dahnert, et al. ‘Scan2CAD:

Learning CAD Model Alignment in RGB-D Scans’. 2019

IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), IEEE, 2019,

https://doi.org10.1109/cvpr.2019.00272.

[23] Avetisyan, Armen, Tatiana Khanova, et al. ‘SceneCAD:

Predicting Object Alignments and Layouts in RGB-D Scans’.

ArXiv [Cs.CV], 27 Mar. 2020,

http://arxiv.org/abs/2003.12622. arXiv.

[24] Dahnert, Manuel, et al. ‘Joint Embedding of 3D Scan and

CAD Objects’. ArXiv [Cs.CV], 19 Aug. 2019,

http://arxiv.org/abs/1908.06989. arXiv.

[25] Gupta, Saurabh, et al. ‘Aligning 3D Models to RGB-D Images

of Cluttered Scenes’. 2015 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), IEEE, 2015,

https://doi.org10.1109/cvpr.2015.7299105.

[26] Jiang, Li, et al. ‘PointGroup: Dual-Set Point Grouping for 3D

Instance Segmentation’. 2020 IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), IEEE,

2020, https://doi.org10.1109/cvpr42600.2020.00492.

[27] Han, Lei, et al. ‘OccuSeg: Occupancy-Aware 3D Instance

Segmentation’. 2020 IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), IEEE, 2020,

https://doi.org10.1109/cvpr42600.2020.00301.

[28] Song, Shuran, and Jianxiong Xiao. ‘Sliding Shapes for 3D

Object Detection in Depth Images’. Computer Vision – ECCV

2014, Springer International Publishing, 2014, pp. 634–651,

https://doi.org10.1007/978-3-319-10599-4_41. Lecture Notes

in Computer Science.

[29] Li, Yangyan, et al. ‘Database-Assisted Object Retrieval for

Real-Time 3D Reconstruction’. Computer Graphics Forum:

Journal of the European Association for Computer Graphics,

vol. 34, no. 2, Wiley, May 2015, pp. 435–446,

https://doi.org10.1111/cgf.12573.

[30] Litany, Or, et al. ‘ASIST: Automatic Semantically Invariant

Scene Transformation’. Computer Vision and Image

Understanding: CVIU, vol. 157, Elsevier BV, Apr. 2017, pp.

284–299, https://doi.org10.1016/j.cviu.2016.08.002.

[31] Qi, Charles R., Hao Su, et al. ‘Volumetric and Multi-View

CNNs for Object Classification on 3D Data’. 2016 IEEE

https://doi.org10.15607/rss.2015.xi.001

WOODSTOCK’18, June, 2018, El Paso, Texas USA F. Surname et al.

Conference on Computer Vision and Pattern Recognition

(CVPR), IEEE, 2016, https://doi.org10.1109/cvpr.2016.609.

[32] Qi, Charles R., Li Yi, et al. ‘PointNet++: Deep Hierarchical

Feature Learning on Point Sets in a Metric Space’. ArXiv

[Cs.CV], 7 June 2017, http://arxiv.org/abs/1706.02413. arXiv.

[33] Park, Jeong Joon, et al. ‘DeepSDF: Learning Continuous

Signed Distance Functions for Shape Representation’. 2019

IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), IEEE, 2019,

https://doi.org10.1109/cvpr.2019.00025.

[34] Mescheder, Lars, et al. ‘Occupancy Networks: Learning 3D

Reconstruction in Function Space’. 2019 IEEE/CVF

Conference on Computer Vision and Pattern Recognition

(CVPR), IEEE, 2019,

https://doi.org10.1109/cvpr.2019.00459.

[35] Zeng, Andy, et al. ‘3DMatch: Learning Local Geometric

Descriptors from RGB-D Reconstructions’. 2017 IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), IEEE, 2017, https://doi.org10.1109/cvpr.2017.29.

[36] Dai, Angela, et al. ‘ScanNet: Richly-Annotated 3D

Reconstructions of Indoor Scenes’. 2017 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), IEEE,

2017, https://doi.org10.1109/cvpr.2017.261.

[37] Chang, Angel X., et al. ‘ShapeNet: An Information-Rich 3D

Model Repository’. ArXiv [Cs.GR], 9 Dec. 2015,

http://arxiv.org/abs/1512.03012. arXiv.

[38] Shapira, Lior, and Daniel Freedman. ‘Reality Skins: Creating

Immersive and Tactile Virtual Environments’. 2016 IEEE

International Symposium on Mixed and Augmented Reality

(ISMAR), IEEE, 2016, https://doi.org10.1109/ismar.2016.23.

[39] Manni, Alessandro, et al. ‘Snap2cad: 3D Indoor Environment

Reconstruction for AR/VR Applications Using a Smartphone

Device’. Computers & Graphics, vol. 100, Elsevier BV, Nov.

2021, pp. 116–124, https://doi.org10.1016/j.cag.2021.07.014.

[40] Ipsita, Ananya, et al. ‘VRFromX: From Scanned Reality to

Interactive Virtual Experience with Human-in-the-Loop’.

Extended Abstracts of the 2021 CHI Conference on Human

Factors in Computing Systems, ACM, 2021,

https://doi.org10.1145/3411763.3451747.

[41] Kari, Mohamed, et al. ‘TransforMR: Pose-Aware Object

Substitution for Composing Alternate Mixed Realities’. 2021

IEEE International Symposium on Mixed and Augmented

Reality (ISMAR), IEEE, 2021,

https://doi.org10.1109/ismar52148.2021.00021.

[42] Armeni, Iro, et al. ‘3D Semantic Parsing of Large-Scale

Indoor Spaces’. 2016 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), IEEE, 2016,

https://doi.org10.1109/cvpr.2016.170.

[43] Shuran, Samuel P., and Jianxiong Lichtenberg. ‘Sun Rgb-d: A

Rgb-d Scene Understanding Benchmark Suite’. Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, 2015, pp. 567–576.

[44] Chen, Zhao, et al. ‘Estimating Depth from RGB and Sparse

Sensing’. ArXiv [Cs.CV], 8 Apr. 2018,

http://arxiv.org/abs/1804.02771. arXiv.

[45] Rukhovich, Danila, et al. ‘FCAF3D: Fully Convolutional

Anchor-Free 3D Object Detection’. Lecture Notes in

Computer Science, Springer Nature Switzerland, 2022, pp.

477–493, https://doi.org10.1007/978-3-031-20080-9_28.

Lecture Notes in Computer Science.

[46] Chen, Shaoyu, et al. ‘Hierarchical Aggregation for 3D

Instance Segmentation’. ArXiv [Cs.CV], 4 Aug. 2021,

http://arxiv.org/abs/2108.02350. arXiv.

[47] Nan, Liangliang, et al. ‘A Search-Classify Approach for

Cluttered Indoor Scene Understanding’. ACM Transactions

on Graphics (TOG), vol. 31, no. 6, 2012, pp. 1–10.

[48] Wu, Zhirong, et al. ‘3D ShapeNets: A Deep Representation

for Volumetric Shapes’. 2015 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), IEEE, 2015,

https://doi.org10.1109/cvpr.2015.7298801.

[49] Avetisyan, Armen, et al. ‘End-to-End CAD Model Retrieval

and 9DoF Alignment in 3D Scans’. ArXiv [Cs.CV], 10 June

2019, http://arxiv.org/abs/1906.04201. arXiv.

[50] Song, Shuran, et al. ‘Semantic Scene Completion from a

Single Depth Image’. 2017 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), IEEE, 2017,

https://doi.org10.1109/cvpr.2017.28.

[51] Deitke, Matt, et al. ‘RoboTHOR: An Open Simulation-to-Real

Embodied AI Platform’. 2020 IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), IEEE,

2020, https://doi.org10.1109/cvpr42600.2020.00323.

[52] Zheng, Jia, et al. ‘Structured3D: A Large Photo-Realistic

Dataset for Structured 3D Modeling’. Computer Vision –

ECCV 2020, Springer International Publishing, 2020, pp.

519–535, https://doi.org10.1007/978-3-030-58545-7_30.

Lecture Notes in Computer Science.

[53] Roberts, Mike, et al. ‘Hypersim: A Photorealistic Synthetic

Dataset for Holistic Indoor Scene Understanding’. 2021

IEEE/CVF International Conference on Computer Vision

(ICCV), IEEE, 2021,

https://doi.org10.1109/iccv48922.2021.01073.

[54] Liang, Zhihao, et al. ‘Instance Segmentation in 3D Scenes

Using Semantic Superpoint Tree Networks’. ArXiv [Cs.CV],

17 Aug. 2021, http://arxiv.org/abs/2108.07478. arXiv.

[55] Pratt, Harry, et al. ‘FCNN: Fourier Convolutional Neural

Networks’. Machine Learning and Knowledge Discovery in

Databases, Springer International Publishing, 2017, pp. 786–

798, https://doi.org10.1007/978-3-319-71249-9_47. Lecture

Notes in Computer Science.

[56] Lim, J. J., Pirsiavash, H., & Torralba, A. (2013). Parsing ikea

objects: Fine pose estimation. In Proceedings of the IEEE

international conference on computer vision (pp. 2992-2999).

[57] Izadinia, H., Shan, Q., & Seitz, S. M. (2017). Im2cad. In

Proceedings of the IEEE conference on computer vision and

pattern recognition (pp. 5134-5143).

[58] Huang, S., Qi, S., Zhu, Y., Xiao, Y., Xu, Y., & Zhu, S. C.

(2018). Holistic 3d scene parsing and reconstruction from a

single rgb image. In Proceedings of the European conference

on computer vision (ECCV) (pp. 187-203).

