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Abstract—With the advent of low-cost RGB-D cameras, mixed
reality serious games using ‘live’ 3D human avatars have become
popular. Here, RGB-D cameras are used for capturing and
transferring user’s motion and texture onto the 3D human
avatar in virtual environments. A system with a single camera is
more suitable for such mixed reality games deployed in homes,
considering the ease of setting up the system. In these mixed
reality games, users can have either a third-person perspec-
tive or a first-person perspective of the virtual environments
used in the games. Since first-person perspective provides a
better Sense of Embodiment (SoE), in this paper, we explore
the problem of providing a first-person perspective for mixed
reality serious games played in homes. We propose a real time
textured humanoid-avatar framework to provide a first-person
perspective and address the challenges involved in setting up
such a gaming system in homes. Our approach comprises:
(a) SMPL humanoid model optimization for capturing user’s
movements continuously; (b) a real-time texture transferring
and merging OpenGL pipeline to build a global texture atlas
across multiple video frames. We target the proposed approach
towards a serious game for amputees, called Mr.MAPP (Mixed
Reality-based framework for Managing Phantom Pain), where
amputee’s intact limb is mirrored in real-time in the virtual
environment. For this purpose, our framework also introduces
a mirroring method to generate a textured phantom limb in
the virtual environment. We carried out a series of visual and
metrics-based studies to evaluate the effectiveness of the proposed
approaches for skeletal pose fitting and texture transfer to SMPL
humanoid models, as well as the mirroring and texturing missing
limb (for future amputee based studies).

Index Terms—Mixed Reality, Real-time Textured Humanoids,
First-Person Perspective Rendering

I. INTRODUCTION

With the advent of RGB-D cameras such as Microsoft

Kinect, mixed reality systems and applications have incorpo-

rated “live” 3D human models [1]. These “live” 3D human

models are generated in real-time by capturing the RGB

(texture), human skeleton, and the depth data associated with a

human in a 3D scene and using these data to create 3D mesh in

real-time and applying texture over the mesh. Such “live” 3D

human models give users a better sense of immersion as they

can see details such as the dress the human is wearing, their

facial emotions, etc. Sense of Embodiment (SoE) is defined

as ”the ensemble of sensations that arise in conjunction with

being inside, having, and controlling a body” [2]. SoE is an

essential part for enhancing user experience in an immersive

virtual environment. Recent studies [3], [4] have indicated that

users experiencing first-person perspective (1PP) in immersive

environments had a better SoE toward their virtual body than

those with a third-person perspective (3PP).

In-home Mixed Reality Serious Games: Once the “live”

3D human mesh models are generated, they can be manip-

ulated just like other 3D graphical models. This fact was

exploited by Mr. MAPP (Mixed reality-based framework for

MAnaging Phantom Pain) [5], [6] to create an in-home serious

game. Phantom pain is typically felt after amputation (or even

paralysis) of limbs. Such phantom pain patients experience

vivid sensations from the missing body part such as frozen

movement or extreme pain. For intervention, mirror therapy

[7] shows that perceptual exercise such as mirror box help

the patient’s brain to learn the fact that the limb is paralyzed

or amputated. Mr.MAPP is a suite of serious games targeting

upper and lower limb amputees to manage phantom pain. It

‘replicates’ a 3D graphical illusion of the intact limb, to create

a similar illusion as the one in the mirror-box therapy.

A. Challenges for First-person Perspective In-home Serious
Games

Mr.MAPP is successful in rendering 3PP but insufficient to

reconstruct the portion invisible from the camera in 1PP. The

person’s mesh looks intact in 3PP (Fig. 1(b)) even though the

right leg was folded as Fig. 1(a). In the 1PP as Fig. 1(c),

however, the holes on lower limbs appears because the upper

side of feet and lower part of leg were blocked by the sole.

One possible solution is to use pre-defined humanoid models.

Skinned Multi-Person Linear model (SMPL) [8] is parametric

humanoid model which contains shape and pose parameters

for customizing 3D model of a person without texture. With

SMPL, users will be able to see the personalize humanoid

avatar in the virtual environment. However, the model will

not be as vivid as the “live” 3D human mesh generated in

real-time using RGB-D cameras, since the SMPL model is an

avatar without any texture.

B. Real-time Textured Humanoid Framework

In this paper, we target the problem of generating high-

quality first-person rendering in mixed reality serious games,

especially for in-home applications. Such a rendering will use

the texture data (in real-time) pertaining to the human in the

3D scene captured by a Kinect RGB-D camera. This real-

time texture will be transferred from the human in the scene

to a customized SMPL humanoid model and will provide an

enhanced SoE in 1PP. The entire series of operations to achieve
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Fig. 1. Comparison the mirrored model from Mr.MAPP and proposed method with Kinect at 80 inches high. (a) RGB image from Kinect; (b) Mr.MAPP in
third person perspective; (c) Mr.MAPP in first person perspective; (d) textured SMPL in third person perspective; (e) textured SMPL in first person perspective.

this goal include: two stage SMPL model optimization for

matching the humanoid to the human in the scene, real-time

texture registration and transfer from the human captured by

a Kinect RGB-D camera. We target the proposed approach

towards the serious game for amputees, Mr.MAPP. While the

proposed approach will work for non-disabled people (with

intact limbs) in a straight-forward manner, we outline an

approach that can: (a) replicate the 3D graphical limb from

the customized humanoid; (b) transfer the texture data from

the intact human limb. Through the sample resulting model in

3PP from Fig. 1(d), we can see the position of body, hands and

leg are mostly aligned with the SMPL model. Further, in 1PP

as Fig. 1(e), basically most of the visible surface are textured.

Hence, this approach can be incorporated in Mr.MAPP to

provide better SoE for amputees using the serious games.

For validation, we carried out a series of visual and metrics-

based studies to evaluate the effectiveness of the proposed

approaches for: (i) real-time skeletal pose fitting and (ii)

texture transfer to SMPL humanoid models, as well as the

(iii) mirroring and texturing missing limb (for future amputee

based studies).

Main contributions of this work includes:

• A two stage SMPL optimization strategy incorporating

shape initialization and near real-time pose update. To

enhance stability of initialization, a randomized repetition

procedure was introduced and validated by Otte’s Kinect

V2 dataset [9].

• An approach for real-time mirroring of the missing limb

(in case of amputees) so that the approach could be

incorporated in Mr.MAPP for providing better SoE.

• A novel approach through simulating the visible area to

evaluate texture retrieval quality with different positions

of Kinect RGB-D camera setup.

II. RELATED WORKS

Reconstructing a live 3D human model is a challenging task

due to the non-rigid deformation of body shape, potentially

fast motion, and large range of possible poses. Typically, to

achieve viewpoint free model, many approaches have been

developed for fusing information from multiple cameras. On

the contrary, for systems targeting regular in-home based

users, reconstructing from a single camera would be a good

alternative.

A. Multi-views systems

With a set of RGB-D cameras, point cloud is a simple

representation for volumetric video since it does not require

much preprocessing for rendering. These point clouds from

various cameras can be aligned based on the intrinsic and

extrinsic parameters or Iterative Closest Point (ICP) algorithm

[10]. Mekuria et al. [11] introduced a point cloud compression

codec to transfer the thousands up to millions of points

efficiently. Truncated signed distance function (TSDF) [12]

is another data structure which fuse the depth data into a

predefined volume. Holoportation [13] reconstructs both shape

and color of whole scene based on the TSDF. In Fusion4D

[1], they additionally maintained key volumes to deal with

radically surface changing and smooth nonrigid motions was

applied within the key volume sequence. Dou et al. [14] further

improves the frame rate of Fusion4D by spectral embedding

and more compact parameterization. For the texture recon-

struction, Du et al. [15] apply majority voting to enhance

the quality of resulting texture. As the task specific target on

human performance capture, Xu et al. [16] uses SMPL [8] as

a core shape and an outer layer to represent the structure of

outfit.

B. Single view systems

In case of single view, the limited viewpoint and occlusion

make the reconstruction even harder. Hence, to have a first-

person perspective game with a single camera from different

perspective, a prior model become more important in the setup.

SMPL [8] is a parameterized human body model which has

been applied in many researches to achieve better human

shape or pose estimation. Further, techniques used by single

view system vary depending on whether depth information is

provided (using RGB-D cameras) or not (only RGB cameras).

1) RGB Camera-based Single View: With a proper model,

some research could even build the reconstruction on top on

RGB data without depth information. For a single photo, Bogo

et al. [17] fit a SMPL model toward 2D skeleton joint with

other shape constrains for reconstructing the pose and shape

of the person. Pavlakos et al. [18] further extends SMPL

with fully articulated hands and an expressive face to retrieve

facial expression and hand gestures. For the case with a video,

Alldieck et al. [19], [20] applied SMPL with an extra offset

layer to reconstruct a textured model. For achieving finer

texture, they further trained a CNN (Convolutional Neural

Networks) for precise texture registration. However, the time
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taken by the method is of the order of minutes, and not really

in real-time. With a prebuilt textured mesh and parameterized

motion, Xu et al. [21] and Habermann et al. [22] pre-trained a

CNN to convert the 2D skeletal joint to 3D space then perform

a non-rigid deformation based on the joints. Yet, the texture

will stay the same unless the user reconstruct another model.

2) RGB-D Camera-based Single View: The depth sensor

provides information about the 3D structure. Some approaches

could still build on a model free framework. DynamicFusion

[23] was simultaneously reconstructing a canonical scene and

tracking a non-rigid deforming scene using TSDF in real-time

without a prior model. Volumedeform [24] extended the work

by using SIFT (Scale Invariant Feature Transform) features to

align the images. Yu et al. [25] added the skeleton information

in DynamicFusion to better fit a full body shape as targeting

on human. Doublefusion [26] further leveraged a SMPL layer

to improve the shape. Guo et al. [27] applied estimated albedo

under Lambertian surface assumption to improve the tracking.

These methods use TSDF with GPU to achieve real-time

performance. Yet, the voxel grid may require large amount

of GPU memory and thus bounded the shape to predefined

volume [28]. To sum up, with single RGB camera only system,

user will not be able to change their texture without a model

re-building process. Moreover, it is harder to achieve real-time

performance without the depth information. Since RGB-D

cameras are easily available, our system uses a single RGB-D

camera with SMPL model and provide real-time performance.

III. PROPOSED METHOD

Figure 2 summarizes the modular framework of our pro-

posed system for high quality first-person rendering in mixed

reality, along with the evaluation strategies (used in Section

IV):

1) Fitting the SMPL model with the joints of each frame

to represent the user’s model in action. This operation

includes model initialization along with pose updates.

2) For rendering, texture is transferred to the global atlas

using RGB image data from Kinect with fitted SMPL

model.

3) In the case of serious games for amputees, we mirror the

intact limb of the amputee to create an illusion of the

missing limb. This mirroring process includes creation

of the missing skeletal joints and the associated texture

information.

A. SMPL model optimization

The proposed approach fits the SMPL joints with the 3D

joints detected by a Kinect RGB-D camera, in near real-time,

for each frame. The optimization is carried out in two stages:

(i) Shape initialization; (ii) Real-time pose update. L-BFGS

(Limited-memory Broyden–Fletcher–Goldfarb–Shanno) opti-

mization [29] is performed on each frame in both the stages.

1) Shape Initialization: Shape initialization is to determine

the shape (β) and initial pose (θ) for the SMPL model from

a set of frames of 3D human skeleton joints in the beginning.

Due to small pose differences between consecutive frames,

Fig. 2. Proposed Approach for High Quality First-Person Rendering with
SMPL optimization and OpenGL

the set of optimized parameters could be applied as initial

value for the next coming frame. Moreover, to avoid the

objective function being trapped into local minimum, extra

nrep times repeated optimizing on randomized parameters

were performed for each frame in the stage to determine the

best result for the current frame. The objective function of the

initializing stage, Einit(β, θ, Ĵ), considered the mismatch of

joints position and regularization term for both θ and β.

Einit(β, θ, Ĵ) = λjEj(β, θ, Ĵ)+λpEp(θ)+λtEt(θ)+λbEb(β)
(1)

wherein λj , λt, λp and λb are the weighted parameters for

the objective function. Ej(β, θ, Ĵ) is the loss corresponding

to the joint mismatch between SMPL and estimated through

Kinect V2. This term is the major source of the whole energy

function.

Ej(β, θ, Ĵ) =
∑

j∈Jm

ρ(Rθ(J(β))j − Ĵj) (2)

The set of joints that could be mapped between SMPL and

Kinect camera extracted joints denote Jm. Ĵ refers to the joint

set estimated by Kinect. Rθ is the global rigid transformation

derived from θ. Hence, the 3D position of SMPL joints

is Rθ(J(β)). ρ is the robust differentiable Geman-McClure

penalty function.

Ep(θ) = minj(−ln(gjN(θ;μθ,j ,Σθ,j))) (3)

Et(θ) = exp(
∑

i∈Js

A(θ)i) +
∑

j∈Jr

exp(A(θ)j) (4)

Ep(θ) is the Gaussians mixture pose prior introduced from

Bogo et al’s work [17]. Et(θ) is the term to regularize θ for

handling/preventing the twisted or unnatural poses. A(θ)i is

the angle of ith set of θ. For avoiding cumulative error over

a few consecutive spine joints, angles corresponding to spine

(Js) and the rest (Jr) (except the global transformation) are

calculated differently. Last, Eb(β) is a ridge regularization

term for beta.

Eb(β) = ‖β‖2 (5)

2) Pose update: The pose update stage could be regarded as

a simplified initialization, for achieving real-time performance.

Once the shape has been initialized, β become a set of

constants for the following pose update stage. Also, no extra
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(a) Unwrap of neutral SMPL (b) Example atlas [19]

Fig. 3. SMPL texture atlas with limbs unwrapped symmetrically

repetition is required since θ has been properly initialized in

the previous stage as well. Epose(β, θ, Ĵ) shows the objective

function for this stage.

Epose(β, θ, Ĵ) = λjEj(β, θ, Ĵ) + λtEt(θ) (6)

B. Texture Atlas and Missing limb generation

To render the fitted model with a vivid appearance, texturing

is required. Rather than applying a synthetic and pre-defined

texture, our approach seeks to transfer the texture from the

‘live’ human user that is captured by the Kinect RGB-D cam-

era, to the fitted SMPL model. Specifically, we back project

the triangle from world space to RGB image for retrieving

the corresponding texture piece on the texture atlas of SMPL.

To create a textured and interactable representation of the

phantom limb for the amputee, both joints and texture will be

mirrored from the intact counterpart. For joints mirroring, a

method based on the joints of hip, shoulder or spine introduced

from Mr.MAPP [5], [6] is applied to generate the joints on the

amputee’s missing limb. For texture mirroring, a SMPL was

unwrapped symmetrically on both upper and lower limbs using

Autodesk Maya1. Fig. 3 shows the unwrapped neutral SMPL.

In Fig. 3a, the region labeled by green and blue box are region

for limb mirroring. The red margin labeled the unsymmetrical

area since the SMPL not exactly symmetrical on the both

sides. Thus, with the limb mirroring texture atlas, the texture

mirroring can be integrated into OpenGL efficiently.

IV. EXPERIMENTAL RESULTS

Prototype of the proposed approach was developed on

Python 3.6. The optimization is running on intel i7-8750H

CPU with 32GB RAM using PyTorch 1.3.1. The rendering en-

gine is Panda3D2 running on dedicated graphic card NVIDIA

GeForce RTX 2070, with OpenGL 4.5. The human body skele-

tal joints and RGB image from Kinect cameras are extracted

using Kinect SDK 2.0. We conducted several experiments to

evaluate the proposed approach with the following goals: (a)

Skeletal pose to SMPL model fitting and pose updates; (b)

Effectiveness of real-time texture transfer; (c) Missing limb

generation and the associated texture transfer.

1https:/autodesk.com/maya
2https://www.panda3d.org/

Fig. 4. Comparison of average loss after different repeat times of random
initialization using Otte’s activity dataset.

A. Shape Initialization

To enhance the stability, we introduced a random repetition

strategy in the initialization process and validated the strategy

using Otte’s activity dataset [9]. In Otte et al’s work, they cre-

ated a set of Kinect RGB-D skeleton dataset with six different

activities, which contains Stand up And Sit down (SAS), Short

Comfortable Speed Walk (SCSW), Short Maximum Speed

Walk (SMSW), Short Line walk (SLW), Stance with closed

feet and open and closed eyes (POCO) and Walking on the

spot (STEPO). Data were collected from a total of 19 user

trials with 3 repetitions for STEPO and 5 repetitions for the

rest activities. Fig. 4 shows the comparison of initialized result

in different times of random repetitions. In this experiment,

the beginning 10 frames of each trials were used for shape

initialization then the average loss from the following 50

frames on pose update were collected as for evaluating the

SMPL optimization. Each activity (with the above acronyms)

is listed in X axis as a group and considered separately since

the fitting result for different pose could be varied. The Y axis

is distribution the average loss across trials. In each group,

the blue boxes are results performed without repetitions in

the initialization stage and the others are involving different

number of repetitions. For all activities, the averaged loss and

its variation in the following pose update stage are much lower

when we have repetitions (as opposed to no repetitions). Thus,

the repetitions result in better and more stable performance in

the initialization stage.

B. Simulation of Texture Atlas Reconstruction with Different
Camera Height

In this experiment, the goal is to estimate effect of camera

height for texture atlas reconstruction in a first-person game.

The example gaming scenario is kicking lower limb forward

in a sitting pose as Bahirat et al.’s work [6]. In Alldieck et

al’s work [19], they released a dataset of total 24 the textured

SMPL with shape parameter and additional personal offsets.

We first recorded movements of the body joints in the example

gaming scenario to fit the pose parameters for operating these
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Fig. 5. Visible texture displayed ratio at different camera setup. The sub-
figures below are the corresponding overlap of texture on lower limb portion
with front camera at 5, 30, 55 and 80 inches high.

models. Then, to simulate the retrievable and visible texture

areas, we use two virtual cameras: (i) a front camera was

set at 2.5m in front of these personalized SMPL model; (ii)

a virtual eye’s camera with FoV 95ox75o located at 0.2m

front of the head joint and looked toward to the fitted SMPL

model’s lower limb to mimic the eyes’ vision. For evaluating

the effectiveness of texture reconstruction with respect to the

height of placement of the virtual front camera, we defined a

visible texture displayed ratio (Rvt(g, c)):

Rvt(g, c) =
area(Tvis(g) ∩ Tret(c))

area(Tvis(g))
(7)

Rvt ∈ [0, 1], Rvt = 1 means all the portions of the 3D avatar

seen by the user are textured; on the contrary, Rvt = 0 means

none of object seen by the user is textured no matter how

much texel has been retrieved. Tvis(g) refers to the set of texel

visible by the user in a gaming scenario (g), Tret(c) refers to

the to the set of texel retrieved using camera configuration (c).
The camera configuration may involve camera properties such

as FoV, position and orientation in general but we focus on the

effectiveness of camera height in our simulation. To calculate

the Rvt here, the two parameters are estimated as below:

1) Visible to virtual front camera at testing height (Tret):

the texel correctly retrieved from over 80 percent of

trials.

2) Visible to virtual eye’s camera (Tvis): surface seen by

virtual eye’s camera in any trial.

The resulting Rvt in Figure 5 demonstrates this simple con-

cept. As the camera height increases from 5 to 80 inches

height, the corresponding Rvt increased from around 0.48 to

0.75. Moreover, the overlapped texture area on lower limb

with cameras at 5, 30, 55 and 80 inches height are listed in the

Figure 5. The meaning of each color is described as following:

Fig. 6. Example of lower limb mirrored SMPL model. (a). RGB frame from
Kinect; (b),(c). textured SMPL in 3PP and 1PP.

• Green: is the area visible to both eye’s and the virtual

front camera. Hence, these textures would contribute to

the user’s vision in the scene.

• Red: is the area visible only to the eye’s camera. More

red area on upper face of feet and limb in the sub-figure

on the lower virtual front camera setup. In other word,

user will not see texture on these areas eventually it might

lower the fidelity of the game.

• Yellow: is visible only to the virtual camera at the front

position, which means user will not notice this area in

the given gaming scenario.

• Blue: the area which will not be captured neither by eye’s

nor virtual front camera.

Through this series of sub-figure, as height of the virtual front

camera increases, the camera view gradually aligned with the

person’s perspective since the green area increase. As a result,

raising the camera’s height is improving the texture retrieval

in this gaming scenario. The result consistent with intuition

since user will see more upper face of their lower limb in 1PP

in our example gaming scenario.

C. Missing limb generation

One main motivation of our system is to have a textured

humanoid avatar with a generated phantom limb. The lower

limb mirrored examples in 3PP and 1PP are provided in Fig.

1d, e. and Fig. 6b, c. Basically all the visible surface in

1PP are hole-free and textured. While, there are still some

areas without proper texture on feet, hands, and pants, since

the SMPL may not exactly match a body in the image. In

summary, our system provides a vivid limb-mirrored textured

model for the lower limb actions in first-person perspective

with the Kincet RGB-D camera at the front.

V. CONCLUDING REMARKS

In this work, we introduced a real-time textured humanoid

avatar framework for mixed reality games in 1PP using a

single RGB-D camera, especially for in-home deployment.

The framework reduced the camera position’s effect through a

skeleton-based virtual floor calibration. We employed a two-

stage optimization strategy to update SMPL model pose with

respect to the pose of the user. Texture transfer to the SMPL

model was carried out by capturing a set of frames and

incorporating the accumulated texture with a global atlas, in

real-time. In the case of serious games for managing phantom

pain, the system could generate a vivid phantom limb by

mirroring the joints, limb, and the associated texture, from the

amputee’s in-tact limb. To increase the visible texture display
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ratio, we can ask users to perform some more initializing

activity to let the Kinect RGB-D camera capture more texture

or adjust the front camera to a higher position. However, for

texture transferring, we found some portion of face, hand

and leg may not be well aligned if we perform a back

projection directly. Thus, a more sophisticated registration

approach may improve the texture retrieval of the system.

Our prototype runs in near real-time, with SMPL optimization

being carried out on CPU. Therefore, optimizing the system

to fully leverage GPU capabilities will be the future steps to

reduce the execution time. Due to the COVID-19 pandemic,

we were limited by the ability to integrate our system for

carrying out human participants-based study for evaluating

SoE (Sense of Embodiment) with the proposed approach for

first-person perspective. We will take that (human participant

study) also as a future work.
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